每個GPIO內部都有這樣的一個電路結構,這個結構在本文下面會具體介紹。
這邊的電路圖稍微提一下:
保護二極管:IO引腳上下兩邊兩個二極管用于防止引腳外部過高、過低的電壓輸入。當引腳電壓高于VDD時,上方的二極管導通;當引腳電壓低于VSS時,下方的二極管導通,防止不正常電壓引入芯片導致芯片燒毀。但是盡管如此,還是不能直接外接大功率器件,須加大功率及隔離電路驅動,防止燒壞芯片或者外接器件無法正常工作。
P-MOS管和N-MOS管:由P-MOS管和N-MOS管組成的單元電路使得GPIO具有“推挽輸出”和“開漏輸出”的模式。這里的電路會在下面很詳細地分析到。
TTL肖特基觸發(fā)器:信號經過觸發(fā)器后,模擬信號轉化為0和1的數字信號。但是,當GPIO引腳作為ADC采集電壓的輸入通道時,用其“模擬輸入”功能,此時信號不再經過觸發(fā)器進行TTL電平轉換。ADC外設要采集到的原始的模擬信號。
下面將具體介紹GPIO的這八種工作方式:
浮空輸入模式
浮空輸入模式下,I/O端口的電平信號直接進入輸入數據寄存器。也就是說,I/O的電平狀態(tài)是不確定的,完全由外部輸入決定;如果在該引腳懸空(在無信號輸入)的情況下,讀取該端口的電平是不確定的。
上拉輸入模式
上拉輸入模式下,I/O端口的電平信號直接進入輸入數據寄存器。但是在I/O端口懸空(在無信號輸入)的情況下,輸入端的電平可以保持在高電平;并且在I/O端口輸入為低電平的時候,輸入端的電平也還是低電平。
下拉輸入模式
下拉輸入模式下,I/O端口的電平信號直接進入輸入數據寄存器。但是在I/O端口懸空(在無信號輸入)的情況下,輸入端的電平可以保持在低電平;并且在I/O端口輸入為高電平的時候,輸入端的電平也還是高電平。
模擬輸入模式
模擬輸入模式下,I/O端口的模擬信號(電壓信號,而非電平信號)直接模擬輸入到片上外設模塊,比如ADC模塊等等。
開漏輸出模式
開漏輸出模式下,通過設置位設置/清除寄存器或者輸出數據寄存器的值,途經N-MOS管,最終輸出到I/O端口。這里要注意N-MOS管,當設置輸出的值為高電平的時候,N-MOS管處于關閉狀態(tài),此時I/O端口的電平就不會由輸出的高低電平決定,而是由I/O端口外部的上拉或者下拉決定;當設置輸出的值為低電平的時候,N-MOS管處于開啟狀態(tài),此時I/O端口的電平就是低電平。同時,I/O端口的電平也可以通過輸入電路進行讀?。蛔⒁猓琁/O端口的電平不一定是輸出的電平。
開漏復用輸出模式
開漏復用輸出模式,與開漏輸出模式很是類似。只是輸出的高低電平的來源,不是讓CPU直接寫輸出數據寄存器,取而代之利用片上外設模塊的復用功能輸出來決定的。
總結與分析
1、什么是推挽結構和推挽電路?
推挽結構一般是指兩個參數相同的三極管或MOS管分別受兩互補信號的控制,總是在一個三極管或MOS管導通的時候另一個截止。高低電平由輸出電平決定。
推挽電路是兩個參數相同的三極管或MOSFET,以推挽方式存在于電路中,各負責正負半周的波形放大任務。電路工作時,兩只對稱的功率開關管每次只有一個導通,所以導通損耗小、效率高。輸出既可以向負載灌電流,也可以從負載抽取電流。推拉式輸出級既提高電路的負載能力,又提高開關速度。
2、開漏輸出和推挽輸出的區(qū)別?
開漏輸出:只可以輸出強低電平,高電平得靠外部電阻拉高。輸出端相當于三極管的集電極。適合于做電流型的驅動,其吸收電流的能力相對強(一般20ma以內);
推挽輸出:可以輸出強高、低電平,連接數字器件。
關于推挽輸出和開漏輸出,最后用一幅最簡單的圖形來概括:
該圖中左邊的便是推挽輸出模式,其中比較器輸出高電平時下面的PNP三極管截止,而上面NPN三極管導通,輸出電平VS+;當比較器輸出低電平時則恰恰相反,PNP三極管導通,輸出和地相連,為低電平。右邊的則可以理解為開漏輸出形式,需要接上拉。
-
MOS管
+關注
關注
108文章
2377瀏覽量
66402 -
信號完整性
+關注
關注
68文章
1391瀏覽量
95349 -
觸發(fā)器
+關注
關注
14文章
1995瀏覽量
61012 -
GPIO
+關注
關注
16文章
1189瀏覽量
51839 -
TTL電平
+關注
關注
1文章
99瀏覽量
11965
發(fā)布評論請先 登錄
相關推薦
評論