0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

真空蒸發(fā)電鍍可用于鋰金屬電池的≤10μm超薄鋰箔

清新電源 ? 來源:清新電源 ? 2024-05-28 09:13 ? 次閱讀

研究簡(jiǎn)介

鋰(Li)金屬由于其特殊的能量密度,在未來的電池技術(shù)中被廣泛認(rèn)為是負(fù)極材料的可行候選材料。然而,常用的商用鋰箔太厚(≈100μm),導(dǎo)致了鋰箔資源的浪費(fèi)。應(yīng)用真空蒸發(fā)鍍技術(shù),成功制備出純度高、粘附性強(qiáng)、厚度小于10 μm的超薄鋰箔(VELi)。對(duì)蒸發(fā)溫度的操縱可以方便地調(diào)節(jié)所制備的鋰離子薄膜的厚度。這種物理減薄方法允許快速、連續(xù)和高精度的大規(guī)模生產(chǎn)。在電流密度為0.5 mA cm?2的情況下,電鍍量為0.5mAhcm?2,VELi||VELi電池可以穩(wěn)定循環(huán)200 h。Li的最大利用率已經(jīng)超過了25%。此外,LiFePO4||VELi全細(xì)胞在1C(1C=155mAhg?1)下具有優(yōu)異的循環(huán)性能,240次循環(huán)后的容量保留率為90.56%。VELi提高了活性鋰的利用率,顯著降低了鋰的使用成本,同時(shí)保證了負(fù)極的循環(huán)和倍增性能。真空蒸發(fā)鍍技術(shù)為超薄鋰負(fù)極的實(shí)際應(yīng)用提供了一種可行的策略。

研究亮點(diǎn)

可以調(diào)節(jié)所制備的鋰離子薄膜的厚度

提高活性鋰?yán)寐屎碗姵匮h(huán)性能

圖文導(dǎo)讀

圖1a顯示了Li金屬細(xì)胞中負(fù)/正面積容量的不平衡。傳統(tǒng)陰極的面積容量為3-10mAhcm?2,而100 μm的NLi陽極的面積容量為20mAhcm?2,導(dǎo)致了大量的Li過剩和Li資源的浪費(fèi)。雖然過厚的LMA可以保證更好的循環(huán)穩(wěn)定性和效率,但過高的Li會(huì)增加活性Li的成本,降低其利用率。如圖1b所示,隨著LMA厚度的減小,其使用成本有所降低,而有源Li的利用率有所提高。此外,當(dāng)LMA的厚度低于10 μm時(shí),可以實(shí)現(xiàn)活性鋰的高利用率。因此,我們報(bào)道了一個(gè)物理減薄過程來減少商用鋰箔的厚度,如圖1c所示。利用熱蒸發(fā)技術(shù),我們成功地實(shí)現(xiàn)了鋰在銅箔上的均勻沉積。金屬鋰蒸發(fā)法表現(xiàn)出優(yōu)異的粘附性能。在圖S1(支持信息)的折疊測(cè)試中,Li經(jīng)過兩次折疊后都沒有從VELi的表面分離出來。同時(shí),對(duì)VELi進(jìn)行了180°的剝離試驗(yàn),檢測(cè)了VELi與銅箔之間的粘結(jié)強(qiáng)度。采用2.5 kg力傳感器和5mms?1拉伸速度。如圖S2(支持信息)所示,VELi沒有發(fā)生剝離。這些結(jié)果表明,鋰金屬薄膜與襯底表面形成了牢固的鍵合,表現(xiàn)出特殊的抗剝離和剝離能力。這一特性使它非常適合于各種商業(yè)應(yīng)用。

在此基礎(chǔ)上,如圖1d所示,實(shí)現(xiàn)了實(shí)現(xiàn)超薄鋰陽極的連續(xù)生產(chǎn)工藝,與傳統(tǒng)的滾對(duì)卷電池生產(chǎn)工藝非常匹配?;谶@些結(jié)果,與其他超薄鋰金屬制備工藝相比,這種物理減薄方法可以實(shí)現(xiàn)快速、連續(xù)、高精度的大規(guī)模生產(chǎn),參數(shù)易于調(diào)節(jié)和加工可控性。更重要的是,通過調(diào)節(jié)蒸發(fā)溫度,可以精確地控制鋰金屬層的厚度。如圖1e和表S1(支持信息)所示,在1ms為?1的線速下,在蒸發(fā)溫度為480、500和520°C時(shí),鋰金屬層的厚度分別為2.506、5.383和9.313 μm,表現(xiàn)出突出的均勻性。此外,我們進(jìn)一步對(duì)不同溫度下蒸發(fā)的金屬鋰進(jìn)行了恒流放電試驗(yàn),得到的面積容量分別為0.45、0.91和1.82mAh cm?2。

7bc00aac-1c7d-11ef-b74b-92fbcf53809c.png

圖1. a)使用常規(guī)鋰箔的鋰金屬全電池不平衡氮磷比示意圖。b)不同厚度的鋰箔的材料成本與鋰箔利用率的關(guān)系圖。c)真空蒸發(fā)鍍法制備超薄鋰金屬陽極的工藝示意圖。d)一種超薄鋰箔的可擴(kuò)展的卷對(duì)卷變薄過程的照片。e)活性Li容量和v)不同蒸發(fā)溫度下VELi的厚度。

圖2a-c顯示了在不同溫度下制備的VELi的頂視圖掃描電子顯微鏡(SEM)圖像。在480°C時(shí),Li表現(xiàn)出光滑和規(guī)則的微尺度線性形態(tài)。隨著蒸發(fā)溫度的升高,蒸發(fā)后的鋰相互擠壓,形成更密集的鋰沉積物。蒸發(fā)鋰自發(fā)形成的圖案結(jié)構(gòu)增加了高活性表面積,從而降低了局部電流密度,有利于形成更均勻的鋰鍍/條紋,降低了作為電池陽極時(shí)的界面電阻。能量色散光譜(EDS)分析(見圖S3,支持信息)證實(shí)了所獲得的鋰箔的高純度,顯示出低水平的副反應(yīng)雜質(zhì)。樣品表面僅顯示出微量的介質(zhì)N、O和C信號(hào)。此外,為了更直觀地監(jiān)測(cè)VELi的剝離行為,建立了一種原位光學(xué)器件。如圖S4(支持信息)所示,在40分鐘的測(cè)試期間內(nèi)(在剝離電流密度為3 mA cm?2時(shí),以0,20、20 min和40 min)采樣9.313 μm VELi剝離。在初始界面處觀察到金屬銀光澤。在高電流密度下快速剝離VELi后,VELi表面的銀灰色均勻變暗,表明VELi被均勻剝離。在40 min,VELi被完全剝離,留下一個(gè)裸露的銅箔。這些實(shí)驗(yàn)結(jié)果進(jìn)一步表明,VELi的表面分布均勻,具有良好的電化學(xué)剝離性能。

此外,VELi的掃描電鏡截面重申了對(duì)鋰蒸發(fā)的精確控制,使鋰箔的精確定制成為可能。觀察到的Li蒸發(fā)截面厚度與測(cè)厚儀的結(jié)果一致(見圖2d-f),顯示出隨著蒸發(fā)溫度的升高,厚度逐漸增加。能量色散光譜(EDS)圖(見圖S5,支持信息)中明顯的Li/Cu邊界進(jìn)一步強(qiáng)調(diào)了熱蒸發(fā)技術(shù)在生產(chǎn)超薄鋰金屬箔方面的優(yōu)越性。該技術(shù)不僅降低了鋰的使用成本,而且顯著提高了活性鋰的利用效率。

7bc3e6d6-1c7d-11ef-b74b-92fbcf53809c.png

圖2在蒸發(fā)溫度為480°C,b,500°C,c,520°C下,VELi的SEM圖像和橫斷面SEM。g)真空蒸發(fā)鍍鋰沉積成核示意圖。

如圖3a-c所示,VELi對(duì)稱電池的循環(huán)性能具有顯著的穩(wěn)定性,在電流密度為0.5 mA cm?2,鍍鋰量為0.5mAhcm?2時(shí)的循環(huán)性能超過200 h。同時(shí),VELi對(duì)稱電池的電壓平臺(tái)更加穩(wěn)定,過電位保持在≈值為22mV。這是因?yàn)檎婵照舭l(fā)鍍層形成的微觀結(jié)構(gòu)使電流密度均質(zhì)化,抑制了鋰枝晶的生長(zhǎng),并保持了更穩(wěn)定的過電位。相比之下,在循環(huán)的中間,由于提供了過量的金屬鋰,NLi的過電位降低,活性鋰可以通過活性鋰及時(shí)補(bǔ)充。然而,在隨后的循環(huán)中,由于樹突和界面副產(chǎn)物的積累,過電位增加。更重要的是,VELi的活性Li利用率已經(jīng)超過了25%,而NLi的利用率僅為0.015%。

VELi獨(dú)特的表面微觀結(jié)構(gòu)具有較大的表面積,在熱沉降過程中具有最小的表能和較低的擴(kuò)散勢(shì)壘。這一特性有利于增加界面處的交換電流密度,降低電化學(xué)反應(yīng)的驅(qū)動(dòng)力。根據(jù)Li||Li電池的Tafel圖確定了不同Li薄片的交換電流密度,如圖3d所示。VELi的交換電流密度為0.604 mA cm?2,是NLi動(dòng)力學(xué)密度(0.461 mA cm?2)的1.31倍。采用循環(huán)伏安法(CV)分析了VELi表面的電荷轉(zhuǎn)移動(dòng)力學(xué)(圖3e)。在5 mV?1的高掃描速度下,與Li/Li+在?0.2-0.2V電壓范圍內(nèi),觀察到Li鍍/剝離對(duì)應(yīng)的特征氧化還原偶。與NLi相比,VELi具有明顯更大的氧化還原面積,表明VELi具有優(yōu)越的氧化還原動(dòng)力學(xué)。為了研究對(duì)稱電池在循環(huán)過程中的界面穩(wěn)定性,我們采用了電化學(xué)阻抗譜(EIS)來顯示電極的電荷傳輸能力。如圖3f和表S2(支持信息)所示,VELi和NLi在50個(gè)循環(huán)后的RSEI和Rct明顯小于循環(huán)前,這與導(dǎo)電SEI層的形成有關(guān)。值得注意的是,NLi在循環(huán)前后的值都低于NLi。這主要是因?yàn)閂ELi電極的三維形貌增加了電解質(zhì)與電極之間的接觸面積,降低了局部電流密度和傳質(zhì)電阻。

7bd48ea0-1c7d-11ef-b74b-92fbcf53809c.png

圖3.a)NLi||NLi和VELi||VELi對(duì)稱細(xì)胞在0.5 mA cm?2下在0.5mAhcm?2下的循環(huán)性能。b,c)在(a).中選定時(shí)間的放大電壓曲線d)Li||Li對(duì)稱細(xì)胞的Tafel圖。e)Li||Cu細(xì)胞的CV掃描。f)VELi和NLi在1 mA cm?2條件下進(jìn)行50個(gè)循環(huán)后的Nyquist圖。

如圖4a-c所示。在初始循環(huán)過程中,鋰離子沉積的形態(tài)表現(xiàn)為光滑的圓形球體,粒徑為≈10μm。經(jīng)過50個(gè)循環(huán)后,VELi表面仍呈平面狀,沒有樹突生長(zhǎng)。相反,在NLi上產(chǎn)生了許多條紋樹突。隨著循環(huán)多達(dá)10個(gè)循環(huán)(圖4e),Li樹突更加不分青紅皂白地生長(zhǎng),并伴隨著大量聚集的體分布。這些樹突極大地增加了鋰金屬陽極的比表面積,導(dǎo)致活性鋰和電解質(zhì)的急劇消耗,最終導(dǎo)致鋰金屬電池的容量迅速下降。當(dāng)循環(huán)達(dá)到50個(gè)循環(huán)時(shí)(圖4f),不均勻的Li沉積進(jìn)一步加劇了Li樹突的生長(zhǎng),最終形成死的Li。Li沉積形貌如此不同的主要原因是VELi的表面微觀結(jié)構(gòu)為L(zhǎng)i的聚集提供了更多的成核位點(diǎn)和空間。如圖所示的鋰鍍VELi電極(圖4g),鋰的微米線性結(jié)構(gòu),因此促進(jìn)加快鋰離子擴(kuò)散,穩(wěn)定鋰金屬電沉積通過減少局部電流密度和更均勻的電場(chǎng)分布,從而抑制鋰樹突的增長(zhǎng)。

7be0eb00-1c7d-11ef-b74b-92fbcf53809c.png

圖4不同循環(huán)數(shù)的鋰礦床的表面形態(tài)。在電流密度分別為0.5 mA cm?2和0.5mAm?2時(shí),a-c)和VEAh)NLi的頂部掃描電鏡圖像。插圖對(duì)應(yīng)于每張圖像的高倍掃描電鏡。g)在VELi電極上的Li電鍍工藝示意圖。

如圖5所示,在電流密度為1C(1C=155mAhg?1)時(shí),銅箔||LFP電池的初始放電比容量為91mAhg?1,但由于空銅箔不能提供活性鋰,其CE和容量保留迅速下降,電池在18次循環(huán)后已經(jīng)完全死亡。相比之下,10 μm的超薄鋰箔真空蒸發(fā)鍍可以與LFP的面積容量相匹配,同時(shí)顯著降低鋰陽極質(zhì)量。得益于蒸汽沉積的Li獨(dú)特的表面微觀結(jié)構(gòu),VELi||LFP全電池在1℃下進(jìn)行240次循環(huán)后表現(xiàn)出良好的循環(huán)穩(wěn)定性,CE可保持在98%。初始放電比容量為129.3mAhg?1,240次循環(huán)后的放電比容量為117.1mAhg?1,容量保留率為90.56%(圖5b)。

更令人高興的是,超薄鋰層只有10 μm的VELi電極,在240次循環(huán)后仍表現(xiàn)出與NLi電極相似的CE和容量保留水平。圖5c顯示了Cu箔||LFP、NLi||LFP和VELi||LFP全電池在不同電流密度下的速率性能。銅箔||LFP全電池的放電比容量迅速下降,只能承受0.5 C的最大電流密度。包含VELi陽極的電池的可逆容量為149.5、141.9、133.1.1、117.7和99.4毫?10.2、0.5、1、2和5C(圖5d),并在更高的多樣性下表現(xiàn)出更好的輸出性能。當(dāng)速率逐漸恢復(fù)到0.2 C時(shí),平均排放比容量可以恢復(fù)到接近初始值的值。此外,我們還組裝了一個(gè)含有低鋰電解質(zhì)的單層軟包電池,以驗(yàn)證薄VELi箔的實(shí)用性(圖5e)。如圖5f和圖S8(支持信息)所示,在0.25 C時(shí),軟包電池的初始放電容量為197 mAh。在低電解質(zhì)和低N/P比為1.9的條件下,軟包電池在進(jìn)行50次循環(huán)后,在1C為189.6 mAh時(shí)表現(xiàn)出穩(wěn)定的循環(huán)。這些結(jié)果表明,薄VELi在高能量密度和延長(zhǎng)壽命的lmb中具有顯著的應(yīng)用潛力。

7be521de-1c7d-11ef-b74b-92fbcf53809c.png

圖5.a)NLi||LFP、VELi||LFP和Cu箔||LFP全電池在1C下的循環(huán)性能,以及b)在選定循環(huán)下相應(yīng)的電壓-容量曲線。c)NLi||LFP、VELi||LFP和Cu箔||LFP的速率性能,以及在從0.2C到5C的不同電流密度下相應(yīng)的電壓-容量曲線。e)LFP||VELi軟包電池的照片。f)LFP||VELi軟包電池的循環(huán)性能。


審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 電池技術(shù)
    +關(guān)注

    關(guān)注

    11

    文章

    893

    瀏覽量

    49093
  • 電解質(zhì)
    +關(guān)注

    關(guān)注

    6

    文章

    786

    瀏覽量

    19916
  • 負(fù)極材料
    +關(guān)注

    關(guān)注

    12

    文章

    172

    瀏覽量

    14083
  • 鋰金屬電池
    +關(guān)注

    關(guān)注

    0

    文章

    132

    瀏覽量

    4261

原文標(biāo)題:南京航天航空大學(xué)張校剛教授small:真空蒸發(fā)電鍍可用于鋰金屬電池的≤10 μm超薄鋰箔

文章出處:【微信號(hào):清新電源,微信公眾號(hào):清新電源】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    最新Nature Energy開發(fā)新型稀釋劑助推金屬電池實(shí)用化!

    眾所知周,通過調(diào)控電解液來穩(wěn)定固體電解質(zhì)間相(SEI),對(duì)于延長(zhǎng)金屬電池循環(huán)壽命至關(guān)重要。
    的頭像 發(fā)表于 05-07 09:10 ?511次閱讀
    最新Nature Energy開發(fā)新型稀釋劑助推<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>實(shí)用化!

    用于延長(zhǎng)高壓高Ni三元金屬電池壽命的無氟醚基電解液

    采用富鎳(Ni)層狀氧化物正極搭配金屬(Li)負(fù)極的金屬電池(LMBs)的能量密度有望達(dá)到傳統(tǒng)鋰離子
    的頭像 發(fā)表于 04-30 09:08 ?643次閱讀
    <b class='flag-5'>用于</b>延長(zhǎng)高壓高Ni三元<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>壽命的無氟醚基電解液

    電池電池的區(qū)別

    電池電池都是鋰離子電池的一種,它們?cè)诮Y(jié)構(gòu)和工作原理上有很多相似之處,但在性能和應(yīng)用方面存在一些差異。下面將對(duì)
    的頭像 發(fā)表于 01-16 10:30 ?1640次閱讀

    電池的應(yīng)用范圍有哪些

    電池具有高能量密度、低自放電率等優(yōu)點(diǎn),廣泛應(yīng)用于各種便攜式電子設(shè)備,此外,電池還在電動(dòng)汽車、儲(chǔ)能系統(tǒng)等領(lǐng)域發(fā)揮著重要作用。 1. 便
    的頭像 發(fā)表于 01-16 10:23 ?623次閱讀

    全固態(tài)金屬電池負(fù)極界面設(shè)計(jì)

    全固態(tài)金屬電池有望應(yīng)用于電動(dòng)汽車上。相比于傳統(tǒng)液態(tài)電解液,固態(tài)電解質(zhì)不易燃,高機(jī)械強(qiáng)度等優(yōu)點(diǎn)。
    的頭像 發(fā)表于 01-16 10:14 ?571次閱讀
    全固態(tài)<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>負(fù)極界面設(shè)計(jì)

    電池的優(yōu)缺點(diǎn)有哪些

    亞硫酰氯(Li/SOCl2)電池(簡(jiǎn)稱:電池)是一種以為負(fù)極,碳作正極,無水四氯鋁酸
    的頭像 發(fā)表于 01-16 10:11 ?2451次閱讀

    金屬電池重大突破:10分鐘完成充電

    金屬電池
    深圳市浮思特科技有限公司
    發(fā)布于 :2024年01月10日 15:29:27

    金屬電池重大突破:10分鐘完成充電,可循環(huán)至少6000次

    金屬電池
    北京中科同志科技股份有限公司
    發(fā)布于 :2024年01月10日 09:19:17

    通過金屬負(fù)極/LPSCl界面調(diào)控實(shí)現(xiàn)超穩(wěn)定全固態(tài)金屬電池

    為解決傳統(tǒng)鋰離子電池能量密度不足、安全性低等問題,部分研究者將目光投向全固態(tài)金屬電池
    的頭像 發(fā)表于 01-09 09:19 ?1291次閱讀
    通過<b class='flag-5'>金屬</b>負(fù)極/LPSCl界面調(diào)控實(shí)現(xiàn)超穩(wěn)定全固態(tài)<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>

    人工界面修飾助力高性能金屬電池的最新研究進(jìn)展與展望!

    金屬負(fù)極的能量密度很高,當(dāng)與高電壓正極結(jié)合時(shí),金屬電池可以實(shí)現(xiàn)接近 500 Wh kg?1 的能量密度。然而,
    的頭像 發(fā)表于 01-02 09:08 ?827次閱讀
    人工界面修飾助力高性能<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的最新研究進(jìn)展與展望!

    固態(tài)金屬電池內(nèi)部固化技術(shù)綜述

    高能量密度金屬電池是下一代電池系統(tǒng)的首選,用聚合物固態(tài)電解質(zhì)取代易燃液態(tài)電解質(zhì)是實(shí)現(xiàn)高安全性和高比能量設(shè)備目標(biāo)的一個(gè)重要步驟。
    的頭像 發(fā)表于 12-24 09:19 ?3327次閱讀
    固態(tài)<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>內(nèi)部固化技術(shù)綜述

    闡明金屬電池中與溫度相關(guān)的沉積/剝離過程以及非活性的演變

    金屬負(fù)極具有最高比容量、最低電化學(xué)勢(shì)和輕重量等優(yōu)點(diǎn),是下一代負(fù)極的理想候選者。然而,負(fù)極的商業(yè)化應(yīng)用一直受到枝晶生長(zhǎng)和低庫侖效率的困擾
    的頭像 發(fā)表于 12-13 09:19 ?848次閱讀
    闡明<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>中與溫度相關(guān)的<b class='flag-5'>鋰</b>沉積/剝離過程以及非活性<b class='flag-5'>鋰</b>的演變

    為什么很多電池都是鋰電池?為什么會(huì)選用元素作為電池的材料呢?

    ,并對(duì)鋰電池的結(jié)構(gòu)、工作原理和種類進(jìn)行分析。 為什么選擇元素作為電池材料? 元素是一種輕質(zhì)金屬,具有較低的密度和較高的反應(yīng)活性。這使得
    的頭像 發(fā)表于 11-30 15:08 ?4921次閱讀

    電池的正極材料是由什么組成的?電池正極材料的優(yōu)點(diǎn)

    電池的正極材料是由什么組成的?電池正極材料的優(yōu)點(diǎn)? 電池是一種常見的鋰離子
    的頭像 發(fā)表于 11-10 14:46 ?668次閱讀

    可用于高面積容量、長(zhǎng)循環(huán)全固態(tài)金屬電池的的Li9N2Cl3

    在所有固態(tài)金屬電池中,要獲得可觀的面積容量(>3 mAh/cm2)和延長(zhǎng)循環(huán)壽命,就需要實(shí)現(xiàn)能夠承受臨界電流密度和容量升高的固態(tài)電解質(zhì)(SSEs)。
    的頭像 發(fā)表于 11-09 11:13 ?617次閱讀
    <b class='flag-5'>可用于</b>高面積容量、長(zhǎng)循環(huán)全固態(tài)<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的的Li9N2Cl3