0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

e2studio開發(fā)磁力計LIS2MDL(1)----輪詢獲取磁力計數(shù)據(jù)

RA生態(tài)工作室 ? 2024-08-09 15:14 ? 次閱讀

來源:嵌入式單片機MCU開發(fā)

概述

本文將介紹如何使用 LIS2MDL 傳感器來讀取數(shù)據(jù)。主要步驟包括初始化傳感器接口、驗證設(shè)備ID、配置傳感器的數(shù)據(jù)輸出率和濾波器,以及通過輪詢方式持續(xù)讀取磁力數(shù)據(jù)和溫度數(shù)據(jù)。讀取到的數(shù)據(jù)會被轉(zhuǎn)換為適當(dāng)?shù)膯挝徊⑼ㄟ^串行通信輸出。 這個傳感器常用于多種電子設(shè)備中,以提供精確的磁場強度數(shù)據(jù),從而用于指南針應(yīng)用、位置追蹤或者動作檢測等功能。

速率

該模塊支持的速度為普通模式(100k)、快速模式(400k)、快速模式+(1M)、高速模式(3.4M)。

新建工程

工程模板

保存工程路徑

芯片配置

本文中使用R7FA4M2AD3CFL來進行演示。

工程模板選擇

時鐘設(shè)置

開發(fā)板上的外部高速晶振為12M.

需要修改XTAL為12M。

UART配置

點擊Stacks->New Stack->Driver->Connectivity -> UART Driver on r_sci_uart。

UART屬性配置

設(shè)置e2studio堆棧

printf函數(shù)通常需要設(shè)置堆棧大小。這是因為printf函數(shù)在運行時需要使用??臻g來存儲臨時變量和函數(shù)調(diào)用信息。如果堆棧大小不足,可能會導(dǎo)致程序崩潰或不可預(yù)期的行為。
printf函數(shù)使用了可變參數(shù)列表,它會在調(diào)用時使用棧來存儲參數(shù),在函數(shù)調(diào)用結(jié)束時再清除參數(shù),這需要足夠的棧空間。另外printf也會使用一些臨時變量,如果棧空間不足,會導(dǎo)致程序崩潰。
因此,為了避免這類問題,應(yīng)該根據(jù)程序的需求來合理設(shè)置堆棧大小。

e2studio的重定向printf設(shè)置

嵌入式系統(tǒng)的開發(fā)中,尤其是在使用GNU編譯器集合(GCC)時,–specs 參數(shù)用于指定鏈接時使用的系統(tǒng)規(guī)格(specs)文件。這些規(guī)格文件控制了編譯器和鏈接器的行為,尤其是關(guān)于系統(tǒng)庫和啟動代碼的鏈接。–specs=rdimon.specs 和 --specs=nosys.specs 是兩種常見的規(guī)格文件,它們用于不同的場景。
–specs=rdimon.specs
用途: 這個選項用于鏈接“Redlib”庫,這是為裸機(bare-metal)和半主機(semihosting)環(huán)境設(shè)計的C庫的一個變體。半主機環(huán)境是一種特殊的運行模式,允許嵌入式程序通過宿主機(如開發(fā)PC)的調(diào)試器進行輸入輸出操作。
應(yīng)用場景: 當(dāng)你需要在沒有完整操作系統(tǒng)的環(huán)境中運行程序,但同時需要使用調(diào)試器來處理輸入輸出(例如打印到宿主機的終端),這個選項非常有用。
特點: 它提供了一些基本的系統(tǒng)調(diào)用,通過調(diào)試接口與宿主機通信。
–specs=nosys.specs
用途: 這個選項鏈接了一個非?;镜南到y(tǒng)庫,這個庫不提供任何系統(tǒng)服務(wù)的實現(xiàn)。
應(yīng)用場景: 適用于完全的裸機程序,其中程序不執(zhí)行任何操作系統(tǒng)調(diào)用,比如不進行文件操作或者系統(tǒng)級輸入輸出。
特點: 這是一個更“裸”的環(huán)境,沒有任何操作系統(tǒng)支持。使用這個規(guī)格文件,程序不期望有操作系統(tǒng)層面的任何支持。
如果你的程序需要與宿主機進行交互(如在開發(fā)期間的調(diào)試),并且通過調(diào)試器進行基本的輸入輸出操作,則使用 --specs=rdimon.specs。
如果你的程序是完全獨立的,不需要任何形式的操作系統(tǒng)服務(wù),包括不進行任何系統(tǒng)級的輸入輸出,則使用 --specs=nosys.specs。

R_SCI_UART_Open()函數(shù)原型

故可以用 R_SCI_UART_Open()函數(shù)進行配置,開啟和初始化UART。

/* Open the transfer instance with initial configuration. */ err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg); assert(FSP_SUCCESS == err);

回調(diào)函數(shù)user_uart_callback ()

當(dāng)數(shù)據(jù)發(fā)送的時候,可以查看UART_EVENT_TX_COMPLETE來判斷是否發(fā)送完畢。

可以檢查檢查 "p_args" 結(jié)構(gòu)體中的 "event" 字段的值是否等于 "UART_EVENT_TX_COMPLETE"。如果條件為真,那么 if 語句后面的代碼塊將會執(zhí)行。

fsp_err_t err = FSP_SUCCESS; volatile bool uart_send_complete_flag = false; void user_uart_callback (uart_callback_args_t * p_args) { if(p_args- >event == UART_EVENT_TX_COMPLETE) { uart_send_complete_flag = true; } }

printf輸出重定向到串口

打印最常用的方法是printf,所以要解決的問題是將printf的輸出重定向到串口,然后通過串口將數(shù)據(jù)發(fā)送出去。 注意一定要加上頭文件#include

#ifdef __GNUC__ //串口重定向 #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif PUTCHAR_PROTOTYPE { err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1); if(FSP_SUCCESS != err) __BKPT(); while(uart_send_complete_flag == false){} uart_send_complete_flag = false; return ch; } int _write(int fd,char *pBuffer,int size) { for(int i=0;i< size;i++) { __io_putchar(*pBuffer++); } return size; }

通信模式

對于LIS2MDL,可以使用SPI或者IIC進行通訊。 最小系統(tǒng)圖如下所示。

在CS管腳為1的時候,為IIC模式

本文使用的板子原理圖如下所示。

CS對應(yīng)到RA4M2板子上的端口為P014。

配置為輸出管腳。

R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_14, BSP_IO_LEVEL_HIGH);

IIC屬性配置

查看手冊,可以得知LIS2MDL的IIC地址為“0011110” ,即0x1E

IIC配置

配置RA4M2的I2C接口,使其作為I2C master進行通信。 查看開發(fā)板原理圖,對應(yīng)的IIC為P407和P408。

點擊Stacks->New Stack->Connectivity -> I2C Master(r_iic_master)。

設(shè)置IIC的配置,需要注意從機的地址。

R_IIC_MASTER_Open()函數(shù)原型

R_IIC_MASTER_Open()函數(shù)為執(zhí)行IIC初始化,開啟配置如下所示。

/* Initialize the I2C module */ err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg); /* Handle any errors. This function should be defined by the user. */ assert(FSP_SUCCESS == err);

R_IIC_MASTER_Write()函數(shù)原型

R_IIC_MASTER_Write()函數(shù)是向IIC設(shè)備中寫入數(shù)據(jù),寫入格式如下所示。

err = R_IIC_MASTER_Write(&g_i2c_master0_ctrl, ?, 1, true); assert(FSP_SUCCESS == err);

R_IIC_MASTER_Read()函數(shù)原型

R_SCI_I2C_Read()函數(shù)是向IIC設(shè)備中讀取數(shù)據(jù),讀取格式如下所示。

/* Read data from I2C slave */ err = R_IIC_MASTER_Read(&g_i2c_master0_ctrl, bufp, len, false); assert(FSP_SUCCESS == err);

sci_i2c_master_callback()回調(diào)函數(shù)

對于數(shù)據(jù)是否發(fā)送完畢,可以查看是否獲取到I2C_MASTER_EVENT_TX_COMPLETE字段。

/* Callback function */ i2c_master_event_t i2c_event = I2C_MASTER_EVENT_ABORTED; uint32_t timeout_ms = 100000; void sci_i2c_master_callback(i2c_master_callback_args_t *p_args) { i2c_event = I2C_MASTER_EVENT_ABORTED; if (NULL != p_args) { /* capture callback event for validating the i2c transfer event*/ i2c_event = p_args- >event; } }

參考程序

https://github.com/STMicroelectronics/lis2mdl-pid

初始換管腳

使能CS為高電平,配置為IIC模式。

R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_14, BSP_IO_LEVEL_HIGH); /* Initialize the I2C module */ err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg); /* Handle any errors. This function should be defined by the user. */ assert(FSP_SUCCESS == err); /* Initialize mems driver interface */ stmdev_ctx_t dev_ctx; dev_ctx.write_reg = platform_write; dev_ctx.read_reg = platform_read; dev_ctx.handle = &SENSOR_BUS; /* Wait sensor boot time */ platform_delay(BOOT_TIME);

獲取ID

可以向WHO_AM_I (4Fh)獲取固定值,判斷是否為0x40

is2mdl_device_id_get為獲取函數(shù)。

對應(yīng)的獲取ID驅(qū)動程序,如下所示。

/* Wait sensor boot time */ platform_delay(BOOT_TIME); /* Check device ID */ lis2mdl_device_id_get(&dev_ctx, &whoamI); printf("LIS2MDL_ID=0x%x,whoamI=0x%xn",LIS2MDL_ID,whoamI); if (whoamI != LIS2MDL_ID) while (1) { /* manage here device not found */ }

復(fù)位操作

可以向CFG_REG_A (60h)的SOFT_RST寄存器寫入1進行復(fù)位。

lis2mdl_reset_set為重置函數(shù)。

對應(yīng)的驅(qū)動程序,如下所示。

/* Restore default configuration */ lis2mdl_reset_set(&dev_ctx, PROPERTY_ENABLE); do { lis2mdl_reset_get(&dev_ctx, &rst); } while (rst);

BDU設(shè)置

在很多傳感器中,數(shù)據(jù)通常被存儲在輸出寄存器中,這些寄存器分為兩部分:MSB和LSB。這兩部分共同表示一個完整的數(shù)據(jù)值。例如,在一個加速度計中,MSB和LSB可能共同表示一個加速度的測量值。
連續(xù)更新模式(BDU = ‘0’):在默認模式下,輸出寄存器的值會持續(xù)不斷地被更新。這意味著在你讀取MSB和LSB的時候,寄存器中的數(shù)據(jù)可能會因為新的測量數(shù)據(jù)而更新。這可能導(dǎo)致一個問題:當(dāng)你讀取MSB時,如果寄存器更新了,接下來讀取的LSB可能就是新的測量值的一部分,而不是與MSB相對應(yīng)的值。這樣,你得到的就是一個“拼湊”的數(shù)據(jù),它可能無法準(zhǔn)確代表任何實際的測量時刻。
塊數(shù)據(jù)更新(BDU)模式(BDU = ‘1’):當(dāng)激活BDU功能時,輸出寄存器中的內(nèi)容不會在讀取MSB和LSB之間更新。這就意味著一旦開始讀取數(shù)據(jù)(無論是先讀MSB還是LSB),寄存器中的那一組數(shù)據(jù)就被“鎖定”,直到兩部分都被讀取完畢。這樣可以確保你讀取的MSB和LSB是同一測量時刻的數(shù)據(jù),避免了讀取到代表不同采樣時刻的數(shù)據(jù)。
簡而言之,BDU位的作用是確保在讀取數(shù)據(jù)時,輸出寄存器的內(nèi)容保持穩(wěn)定,從而避免讀取到拼湊或錯誤的數(shù)據(jù)。這對于需要高精度和穩(wěn)定性的應(yīng)用尤為重要。
可以向CTRL3 (12h)的BDU寄存器寫入1進行開啟。

對應(yīng)的驅(qū)動程序,如下所示。

/* Enable Block Data Update */ lis2mdl_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);

設(shè)置速率

速率可以通過CFG_REG_A (60h)的ODR設(shè)置速率。

設(shè)置速率可以使用如下函數(shù)。

/* Set Output Data Rate */ lis2mdl_data_rate_set(&dev_ctx, LIS2MDL_ODR_10Hz);

啟用偏移消除

LIS2MDL 磁力計的配置寄存器(CFG_REG_B)的OFF_CANC - 這個位用于啟用或禁用偏移消除。
這意味著每次磁力計準(zhǔn)備輸出新的測量數(shù)據(jù)時,它都會自動進行偏移校準(zhǔn),以確保數(shù)據(jù)的準(zhǔn)確性。這通常用于校準(zhǔn)傳感器,以消除由于傳感器偏移或環(huán)境因素引起的任何誤差。

/* Set / Reset sensor mode */ lis2mdl_set_rst_mode_set(&dev_ctx, LIS2MDL_SENS_OFF_CANC_EVERY_ODR);

開啟溫度補償

開啟溫度補償可以通過CFG_REG_A (60h)的COMP_TEMP_EN進行配置。

/* Enable temperature compensation */ lis2mdl_offset_temp_comp_set(&dev_ctx, PROPERTY_ENABLE);

設(shè)置為連續(xù)模式

LIS2MDL 磁力計 CFG_REG_A (60h) 配置寄存器的MD1 和 MD0 - 這兩個位用于選擇設(shè)備的工作模式。
00 - 連續(xù)模式,設(shè)備連續(xù)進行測量并將結(jié)果放在數(shù)據(jù)寄存器中。
01 - 單次模式,設(shè)備進行單次測量,然后返回到空閑模式。
10 和 11 - 空閑模式,設(shè)備被置于空閑模式,但I2C和SPI接口仍然激活

/* Set device in continuous mode */ lis2mdl_operating_mode_set(&dev_ctx, LIS2MDL_CONTINUOUS_MODE);

輪詢讀取數(shù)據(jù)

對于數(shù)據(jù)是否準(zhǔn)備好,可以查看STATUS_REG (67h)的Zyxda位,判斷是否有新數(shù)據(jù)到達。

uint8_t reg; /* Read output only if new value is available */ lis2mdl_mag_data_ready_get(&dev_ctx, ?);

數(shù)據(jù)OUTX_L_REG(68h)-OUTZ_H_REG(6Dh)獲取。

/* Read magnetic field data */ memset(data_raw_magnetic, 0x00, 3 * sizeof(int16_t)); lis2mdl_magnetic_raw_get(&dev_ctx, data_raw_magnetic); magnetic_mG[0] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[0]); magnetic_mG[1] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[1]); magnetic_mG[2] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[2]);

主程序

#include "hal_data.h" #include < stdio.h > #include "lis2mdl_reg.h" fsp_err_t err = FSP_SUCCESS; volatile bool uart_send_complete_flag = false; void user_uart_callback (uart_callback_args_t * p_args) { if(p_args- >event == UART_EVENT_TX_COMPLETE) { uart_send_complete_flag = true; } } /* Callback function */ i2c_master_event_t i2c_event = I2C_MASTER_EVENT_ABORTED; uint32_t timeout_ms = 100000; void sci_i2c_master_callback(i2c_master_callback_args_t *p_args) { i2c_event = I2C_MASTER_EVENT_ABORTED; if (NULL != p_args) { /* capture callback event for validating the i2c transfer event*/ i2c_event = p_args- >event; } } #ifdef __GNUC__ //串口重定向 #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif PUTCHAR_PROTOTYPE { err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1); if(FSP_SUCCESS != err) __BKPT(); while(uart_send_complete_flag == false){} uart_send_complete_flag = false; return ch; } int _write(int fd,char *pBuffer,int size) { for(int i=0;i< size;i++) { __io_putchar(*pBuffer++); } return size; } FSP_CPP_HEADER void R_BSP_WarmStart(bsp_warm_start_event_t event); FSP_CPP_FOOTER #define SENSOR_BUS g_i2c_master0_ctrl /* Private macro -------------------------------------------------------------*/ #define BOOT_TIME 20 //ms /* Private variables ---------------------------------------------------------*/ static int16_t data_raw_magnetic[3]; static int16_t data_raw_temperature; static float magnetic_mG[3]; static float temperature_degC; static uint8_t whoamI, rst; static uint8_t tx_buffer[1000]; /* Extern variables ----------------------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /* * WARNING: * Functions declare in this section are defined at the end of this file * and are strictly related to the hardware platform used. * */ static int32_t platform_write(void *handle, uint8_t reg, const uint8_t *bufp, uint16_t len); static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp, uint16_t len); static void tx_com(uint8_t *tx_buffer, uint16_t len); static void platform_delay(uint32_t ms); static void platform_init(void); /*******************************************************************************************************************//** * main() is generated by the RA Configuration editor and is used to generate threads if an RTOS is used. This function * is called by main() when no RTOS is used. **********************************************************************************************************************/ void hal_entry(void) { /* TODO: add your own code here */ /* Open the transfer instance with initial configuration. */ err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg); assert(FSP_SUCCESS == err); printf("hello world!n"); R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_14, BSP_IO_LEVEL_HIGH); /* Initialize the I2C module */ err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg); /* Handle any errors. This function should be defined by the user. */ assert(FSP_SUCCESS == err); /* Initialize mems driver interface */ stmdev_ctx_t dev_ctx; dev_ctx.write_reg = platform_write; dev_ctx.read_reg = platform_read; dev_ctx.handle = &SENSOR_BUS; /* Wait sensor boot time */ platform_delay(BOOT_TIME); /* Check device ID */ lis2mdl_device_id_get(&dev_ctx, &whoamI); printf("LIS2MDL_ID=0x%x,whoamI=0x%xn",LIS2MDL_ID,whoamI); if (whoamI != LIS2MDL_ID) while (1) { /* manage here device not found */ } /* Restore default configuration */ lis2mdl_reset_set(&dev_ctx, PROPERTY_ENABLE); do { lis2mdl_reset_get(&dev_ctx, &rst); } while (rst); /* Enable Block Data Update */ lis2mdl_block_data_update_set(&dev_ctx, PROPERTY_ENABLE); /* Set Output Data Rate */ lis2mdl_data_rate_set(&dev_ctx, LIS2MDL_ODR_10Hz); /* Set / Reset sensor mode */ lis2mdl_set_rst_mode_set(&dev_ctx, LIS2MDL_SENS_OFF_CANC_EVERY_ODR); /* Enable temperature compensation */ lis2mdl_offset_temp_comp_set(&dev_ctx, PROPERTY_ENABLE); /* Set device in continuous mode */ lis2mdl_operating_mode_set(&dev_ctx, LIS2MDL_CONTINUOUS_MODE); while (1) { uint8_t reg; /* Read output only if new value is available */ lis2mdl_mag_data_ready_get(&dev_ctx, ?); if (reg) { /* Read magnetic field data */ memset(data_raw_magnetic, 0x00, 3 * sizeof(int16_t)); lis2mdl_magnetic_raw_get(&dev_ctx, data_raw_magnetic); magnetic_mG[0] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[0]); magnetic_mG[1] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[1]); magnetic_mG[2] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[2]); printf("Magnetic field [mG]:%4.2ft%4.2ft%4.2frn",magnetic_mG[0], magnetic_mG[1], magnetic_mG[2]); /* Read temperature data */ memset(&data_raw_temperature, 0x00, sizeof(int16_t)); lis2mdl_temperature_raw_get(&dev_ctx, &data_raw_temperature); temperature_degC = lis2mdl_from_lsb_to_celsius(data_raw_temperature); printf("Temperature [degC]:%6.2frn",temperature_degC); } R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS); } #if BSP_TZ_SECURE_BUILD /* Enter non-secure code */ R_BSP_NonSecureEnter(); #endif }

演示

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2541

    文章

    49935

    瀏覽量

    747420
  • Studio
    +關(guān)注

    關(guān)注

    2

    文章

    188

    瀏覽量

    28549
  • 磁力計
    +關(guān)注

    關(guān)注

    1

    文章

    71

    瀏覽量

    20744
收藏 人收藏

    評論

    相關(guān)推薦

    陀螺儀LSM6DSV16X與AI集成(11)----融合磁力計進行姿態(tài)解算

    MotionFX庫包含用于校準(zhǔn)陀螺儀、加速度磁力計傳感器的例程。 將磁力計數(shù)據(jù)與加速度和陀螺儀的
    的頭像 發(fā)表于 09-06 16:57 ?1320次閱讀
    陀螺儀LSM6DSV16X與AI集成(11)----融合<b class='flag-5'>磁力計</b>進行姿態(tài)解算

    陀螺儀LSM6DSV16X與AI集成(10)----獲取磁力計數(shù)據(jù)

    本文將介紹如何使用 LIS2MDL 傳感器來讀取數(shù)據(jù)。主要步驟包括初始化傳感器接口、驗證設(shè)備ID、配置傳感器的數(shù)據(jù)輸出率和濾波器,以及通過輪詢方式持續(xù)讀取
    的頭像 發(fā)表于 09-02 14:31 ?607次閱讀
    陀螺儀LSM6DSV16X與AI集成(10)----<b class='flag-5'>獲取</b><b class='flag-5'>磁力計數(shù)據(jù)</b>

    磁力計LIS2MDL開發(fā)(4)----MotionMC 執(zhí)行磁力計校準(zhǔn)

    運行的輕量級算法,能夠在系統(tǒng)運行期間進行動態(tài)校準(zhǔn),確保磁力計的輸出數(shù)據(jù)始終準(zhǔn)確可靠。 在本文中,將介紹如何使用LIS2MDL磁力計與MotionMC庫執(zhí)行
    的頭像 發(fā)表于 08-26 10:56 ?995次閱讀
    <b class='flag-5'>磁力計</b><b class='flag-5'>LIS2MDL</b><b class='flag-5'>開發(fā)</b>(4)----MotionMC 執(zhí)行<b class='flag-5'>磁力計</b>校準(zhǔn)

    驅(qū)動LSM6DS3TR-C實現(xiàn)高效運動檢測與數(shù)據(jù)采集(11)----磁力計校準(zhǔn)

    磁力計校準(zhǔn)是確保傳感器數(shù)據(jù)準(zhǔn)確性和可靠性的關(guān)鍵步驟。磁力計用于測量地球磁場,并在導(dǎo)航、定位、姿態(tài)測量等應(yīng)用中起到重要作用。然而,磁力計在使用過程中會受到環(huán)境磁場、硬件偏差、安裝誤差等因
    的頭像 發(fā)表于 08-23 09:57 ?163次閱讀
    驅(qū)動LSM6DS3TR-C實現(xiàn)高效運動檢測與<b class='flag-5'>數(shù)據(jù)</b>采集(11)----<b class='flag-5'>磁力計</b>校準(zhǔn)

    陀螺儀LSM6DSOW開發(fā)(6)----獲取磁力計數(shù)據(jù)

    本文將介紹如何使用 LIS2MDL 傳感器來讀取數(shù)據(jù)。主要步驟包括初始化傳感器接口、驗證設(shè)備ID、配置傳感器的數(shù)據(jù)輸出率和濾波器,以及通過輪詢方式持續(xù)讀取
    的頭像 發(fā)表于 08-19 18:25 ?742次閱讀
    陀螺儀LSM6DSOW<b class='flag-5'>開發(fā)</b>(6)----<b class='flag-5'>獲取</b><b class='flag-5'>磁力計數(shù)據(jù)</b>

    驅(qū)動LSM6DS3TR-C實現(xiàn)高效運動檢測與數(shù)據(jù)采集(9)----獲取磁力計數(shù)據(jù)

    本文將介紹如何使用 LIS2MDL 傳感器來讀取數(shù)據(jù)。主要步驟包括初始化傳感器接口、驗證設(shè)備ID、配置傳感器的數(shù)據(jù)輸出率和濾波器,以及通過輪詢方式持續(xù)讀取
    的頭像 發(fā)表于 08-02 15:47 ?435次閱讀
    驅(qū)動LSM6DS3TR-C實現(xiàn)高效運動檢測與<b class='flag-5'>數(shù)據(jù)</b>采集(9)----<b class='flag-5'>獲取</b><b class='flag-5'>磁力計數(shù)據(jù)</b>

    e2studio開發(fā)磁力計LIS2MDL(2)----電子羅盤

    本文將介紹如何使用 LIS2MDL 傳感器來讀取數(shù)據(jù)來轉(zhuǎn)化為指南針。 地磁場強度范圍約為 23,000 至 66,000 nT ,并且可以建模為磁偶極子,其場線起源于地球地理南部附近的點,并終止
    的頭像 發(fā)表于 05-16 17:00 ?390次閱讀
    <b class='flag-5'>e2studio</b><b class='flag-5'>開發(fā)</b><b class='flag-5'>磁力計</b><b class='flag-5'>LIS2MDL</b>(<b class='flag-5'>2</b>)----電子羅盤

    e2studio開發(fā)磁力計LIS2MDL(1)----輪詢獲取磁力計數(shù)據(jù)

    本文將介紹如何使用 LIS2MDL 傳感器來讀取數(shù)據(jù)。主要步驟包括初始化傳感器接口、驗證設(shè)備ID、配置傳感器的數(shù)據(jù)輸出率和濾波器,以及通過輪詢方式持續(xù)讀取
    的頭像 發(fā)表于 05-16 16:54 ?1027次閱讀
    <b class='flag-5'>e2studio</b><b class='flag-5'>開發(fā)</b><b class='flag-5'>磁力計</b><b class='flag-5'>LIS2MDL</b>(<b class='flag-5'>1</b>)----<b class='flag-5'>輪詢</b><b class='flag-5'>獲取</b><b class='flag-5'>磁力計數(shù)據(jù)</b>

    使用主控IIC讀取MPU9250的磁力計數(shù)據(jù),速度特別慢怎么解決?

    使用iic對mpu9250進行讀取數(shù)據(jù),讀取磁力計數(shù)據(jù)時采用的是主控iic方式,但是讀取的速度特別慢,幾秒一次,網(wǎng)上說磁力計數(shù)據(jù)輸出的速率最快是100hz,幾秒一次也太慢了;另外在初始化函數(shù)中開啟了延時,但是一次讀取6個字節(jié)的
    發(fā)表于 04-11 07:02

    單片機一個IIC連接兩個MPU9250如何設(shè)置讀取磁力計的模式?

    在STM32單片機的一個IIC接口上同時連了兩個MPU9250傳感器,將兩者的AD0分別設(shè)為高和低,對于磁力計都設(shè)置成Bypass模式,發(fā)現(xiàn)兩塊磁力計數(shù)據(jù)都能讀出來,Bypass模式不是由單片機
    發(fā)表于 04-10 07:14

    磁力計LIS2MDL開發(fā)(2)----電子羅盤

    本文將介紹如何使用 LIS2MDL 傳感器來讀取數(shù)據(jù)來轉(zhuǎn)化為指南針。
    的頭像 發(fā)表于 12-18 11:01 ?1151次閱讀
    <b class='flag-5'>磁力計</b><b class='flag-5'>LIS2MDL</b><b class='flag-5'>開發(fā)</b>(<b class='flag-5'>2</b>)----電子羅盤

    磁力計LIS2MDL開發(fā)(1)----輪詢獲取磁力計數(shù)據(jù)

    本文將介紹如何使用 LIS2MDL 傳感器來讀取數(shù)據(jù)。主要步驟包括初始化傳感器接口、驗證設(shè)備ID、配置傳感器的數(shù)據(jù)輸出率和濾波器,以及通過輪詢方式持續(xù)讀取
    的頭像 發(fā)表于 12-18 10:56 ?1175次閱讀
    <b class='flag-5'>磁力計</b><b class='flag-5'>LIS2MDL</b><b class='flag-5'>開發(fā)</b>(<b class='flag-5'>1</b>)----<b class='flag-5'>輪詢</b><b class='flag-5'>獲取</b><b class='flag-5'>磁力計數(shù)據(jù)</b>

    Melexis宣布推出一款Triaxis?微功耗磁力計MLX90394

    據(jù)麥姆斯咨詢報道,近日,全球微電子工程公司Melexis宣布,推出Triaxis?微功耗磁力計MLX90394。
    的頭像 發(fā)表于 12-15 17:25 ?826次閱讀

    磁力計測出來,x,y,z分別代表什么?

    磁力計測出來x,y,z分別代表什么
    發(fā)表于 10-16 08:22

    MEMS_慣性傳感器16-磁力計橢球擬合校準(zhǔn)步驟

    磁力計橢球擬合校準(zhǔn)是一種將磁力計測量數(shù)據(jù)校準(zhǔn)到真實磁場的技術(shù)。這種技術(shù)通常使用橢球模型來擬合磁力計的測量結(jié)果,然后通過最小二乘法來找到擬合參數(shù)的最優(yōu)解。
    發(fā)表于 10-15 15:49 ?1844次閱讀
    MEMS_慣性傳感器16-<b class='flag-5'>磁力計</b>橢球擬合校準(zhǔn)步驟