0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

提升高功率半導體可靠性——使用Simcenter通過工業(yè)級熱表征加速測試和故障診斷

貝思科爾 ? 2024-08-30 13:11 ? 次閱讀

40ebfb60-668e-11ef-89ff-92fbcf53809c.png

內(nèi)容摘要

消費和工業(yè)電子系統(tǒng)的能源需求都在增加。因此,電子電力元器件供應商和原始設備制造商(OEM)面臨著提供航空、電動汽車、火車、發(fā)電和可再生能源生產(chǎn)所需的高可靠性系統(tǒng)的挑戰(zhàn)。SimcenterTM MicredTM Power Tester 硬件旨在通過更快地測試和診斷出電力元器件可能的故障原因,幫助應對上述挑戰(zhàn)。下面是兩個使用絕緣柵雙極晶體管(IGBT)模塊的例子,用以說明如何解決這個問題。

序言

電力電子元器件(例如金屬氧化物半導體場效應晶體管(MOSFET)、二極管、晶體管和IGBT)被廣泛用于各種產(chǎn)生、轉(zhuǎn)換和控制電能的場合。由于消費者和工業(yè)應用的能源需求不斷增加,功率模塊制造商所面臨的挑戰(zhàn)是要在保持高質(zhì)量和高可靠性的同時,提高最大功率和電流負載能力。例如,鐵路牽引應用的預期可靠使用壽命為30年,而對于納入到混合動力和電動車的功率模塊以及太陽能和風力渦輪機的能量生產(chǎn)系統(tǒng)而言,則要求循環(huán)數(shù)達到50,000到數(shù)百萬。隨著需求變得越來越緊迫,創(chuàng)新帶來了一些新的技術,例如使用具有增強熱傳導系數(shù)的陶瓷基板和帶式鍵合來取代粗封裝鍵合線,以及使用無焊料芯片粘接技術來增強模塊的功率循環(huán)能力等等。新的基板有助于降低溫度,載帶可載荷更大的電流,而且無焊料芯片粘接可以是燒結(jié)的銀,具有特別低的熱阻。簡言之,就是對熱流路徑進行了改進。但是,這些系統(tǒng)上的熱和熱-機械應力仍然會造成相關的功率循環(huán)和散熱故障。這些應力可能會導致很多問題,如封裝鍵合線降級(圖1)、焊接疲勞、疊層分層、芯片或基板破裂。傳統(tǒng)上用于電源循環(huán)故障測試的過程重復且耗時。此過程只能在事后進行,并且必須在實驗室中進行,以分析封裝的內(nèi)部狀況。412ce4e0-668e-11ef-89ff-92fbcf53809c.png

圖1.損壞的IGBT模塊。

使用Simcenter Micred Power Tester

可加快測試和診斷速度

Simcenter Micred Power Tester是罕見的專為制造以及實驗室環(huán)境設計的設備,它能夠在自動功率循環(huán)的同時為正在發(fā)生的故障診斷生成實時分析數(shù)據(jù)(圖2)。它用于更快地完成使用壽命測試,并可提高使用電力電子模塊的應用系統(tǒng)可靠性。

415efec6-668e-11ef-89ff-92fbcf53809c.png

圖2.Simcenter Micred Power Tester專為半導體制造環(huán)境而設計。

Simcenter Micred Power Tester是用于電子元件、發(fā)光二極管(LED)和系統(tǒng)的Simcenter Micred T3STER硬件熱測量和熱特征提取技術的工業(yè)實施。Simcenter Micred Power Tester的獨特功能可以在一臺機器上同時進行全自動功率測試和循環(huán),而不必在此過程中拆卸下被測器件的設備。其簡單易用的觸摸屏界面方便技術人員在生產(chǎn)車間內(nèi)使用,也便于故障分析工程師在實驗室中使用(圖3)。

41917112-668e-11ef-89ff-92fbcf53809c.png

圖3.Simcenter Micred Power Tester觸摸屏界面(從左到右):主屏幕、器件創(chuàng)建、在冷板上放置器件。

Simcenter Micred Power Tester可以感測電流、電壓和芯片溫度,并使用結(jié)構(gòu)函數(shù)分析來記錄封裝結(jié)構(gòu)中的變化或故障,這是分析MOSFET、IGBT和通用雙極器件的首選。機器可用于增強和加速封裝開發(fā)、可靠性測試,以及在生產(chǎn)前對輸入的元件進行批量檢查。

在運行功率循環(huán)的過程中,實時結(jié)構(gòu)函數(shù)分析顯示正在發(fā)生的故障、循環(huán)數(shù)和產(chǎn)生故障的原因,省去事后去實驗室分析的麻煩。不再需要在多個樣品上進行耗時的循環(huán)測試以估計降級對應的循環(huán)數(shù)范圍。也沒有必要在該范圍內(nèi)額外增加熱測量次數(shù)來確定捕獲的降級真實存在。被測器件只需安裝連接一次,相關循環(huán)和配置從一開始即可進行定義。

使用Simcenter Micred Power Tester,電力電子產(chǎn)品供應商能夠為其客戶設計出更可靠的電力電子封裝,并能提供可靠性規(guī)范。元器件設計人員和制造商能夠驗證供應商的可靠性規(guī)范和鑒定封裝的可靠性。負責設計和制造需要具有長期高可靠性產(chǎn)品的人員將能夠在系統(tǒng)級別進行測試。

Simcenter Micred Power Tester旨在遵循聯(lián)合電子器件工程委員會(JEDEC)標準JESD51-1靜態(tài)測試方法。系統(tǒng)可以根據(jù)捕獲到的瞬態(tài)響應,自動生成相應的結(jié)構(gòu)函數(shù)。結(jié)構(gòu)函數(shù)提供通過熱阻和熱電容表示的熱傳導路徑的等效模型,這些模型可用于檢測結(jié)構(gòu)失效或捕捉熱傳導路徑中的局部熱阻。Simcenter Micred Power Tester還支持JEDEC標準JESD51-14瞬態(tài)雙界面測量以確定RthJC。組合的功率循環(huán)的過程和Rth測量模式會在使用功率循環(huán)的器件上產(chǎn)生應力、在循環(huán)期間定期測量Rth、監(jiān)控系統(tǒng)參數(shù)(例如電壓和電流),以及自動增加Rth測量頻率。

Simcenter Micred Power Tester生成的測試和特征提取數(shù)據(jù)可用于在熱仿真軟件Simcenter Flotherm和Simcenter FLOEFD中對詳細模型進行校準和驗證。Simcenter是Siemens Xcelerator軟硬件和服務業(yè)務平臺的一部分。

示例:通過循環(huán)使用壽命測試IGBT模塊

電子電力模塊及其相關組件和系統(tǒng)的設計人員必須確保芯片和基板之間的熱阻盡可能地低,必須創(chuàng)建可靠的鍵合并確保芯片粘接層在產(chǎn)品的使用壽命內(nèi)能夠承受極大的熱載荷。最大載荷循環(huán)數(shù)和器件溫度/載荷條件之間的關系必須賦能較為準確地估算功率模塊的使用壽命。

隨著純電動和混合動力車輛的問世,IGBT器件在相互作用和高壓變流器應用領域已占據(jù)龍頭地位,而各種結(jié)點中散發(fā)的熱量對這些元器件的可靠性會有很大影響。工作過程中的高結(jié)溫和高溫度梯度會引起機械應力,尤其是在具有不同熱膨脹系數(shù)的材料之間的接觸面上,而這可能導致降級甚至完全失效。

41abdbba-668e-11ef-89ff-92fbcf53809c.png

圖4.IGBT模塊的橫截面。

我們對四個包含兩個半橋的中功率IGBT模塊進行了測試,以證明可以通過元器件的自動功率循環(huán)獲得豐富數(shù)據(jù)。這些模塊被固定在Simcenter Micred Power Tester中集成的冷板上(采用液冷散熱),用一塊高熱導率導熱墊來盡量減小界面間的熱阻。使用由Simcenter Micred Power Tester控制的冷凍循環(huán)器,在整個實驗過程中,冷板溫度保持在25攝氏度(°C)。

將器件的柵極連接到器件的漏極(即所謂的“放大二極管設置”),同時各個半橋使用單獨的驅(qū)動電路供電。兩個電流源分別連接到相應的半橋。使用一個可以快速開關的高電流源對這些器件施加階躍式功率變化。另外使用一個低電流電源為IGBT提供連續(xù)偏壓,這樣可在加熱電流關閉時測量器件溫度。

在第一組測試中,我們采用恒定的加熱和冷卻時間分別測試了四個樣品。選擇的加熱和冷卻時間分別是加熱3秒鐘和冷卻10秒鐘,在200瓦(W)功率條件下將初始溫度波動保持在100°C左右。這樣的測試設置可以最貼切地模擬實際應用環(huán)境,在此環(huán)境中,熱結(jié)構(gòu)的降級會導致結(jié)溫升高,進而加速器件老化。

41cacb56-668e-11ef-89ff-92fbcf53809c.png

圖5.樣品0在不同時間點的控制測量值對應的結(jié)構(gòu)函數(shù)。

在這四個器件中,樣品3在經(jīng)過10,000次循環(huán)后不久便失效了,遠遠早于其他樣品。樣品0、1和2持續(xù)時間較長,分別在經(jīng)過40,660、41,476和43,489次功率循環(huán)后失效。圖5顯示了通過瞬態(tài)熱測試(每隔5,000個循環(huán)對樣品0執(zhí)行一次測量)生成的結(jié)構(gòu)函數(shù)。0.08瓦特秒/開爾文(Ws/K)處的平坦區(qū)域?qū)谛酒N裝。該結(jié)構(gòu)在15,000次循環(huán)之前是穩(wěn)定的,但過了這個點之后,隨著熱阻持續(xù)增大,芯片粘接層出現(xiàn)明顯降級,直至器件失效。導致器件失效的直接原因仍舊不明,但我們發(fā)現(xiàn),柵極和射極之間形成了短路,而且在芯片表面可以看到一些焦斑。

第二組測試使用完全相同的樣品,但采用由Simcenter Micred Power Tester支持的不同功率策略。模塊中的兩個半橋安裝在同一基板的不同基底上。三個器件均采用兩種封裝進行了測試,其中被測器件中的IGBT1和IGBT3屬于同一模塊,但位于不同的半橋。

我們對IGBT1保持恒定的電流,對IGBT2保持恒定的加熱功率,對IGBT3保持恒定的結(jié)溫變化。選擇的設置能夠為所有器件提供相同的初始結(jié)點溫升,即對每個器件加熱3秒鐘和冷卻17秒鐘,初始加熱功率約240W,確保對比結(jié)果公平公正。對每個器件分別測量了所有循環(huán)中全部的加熱和冷卻瞬態(tài)變化,并由Simcenter Micred Power Tester對下列電學參數(shù)和熱學參數(shù)進行了持續(xù)監(jiān)測:

開啟加熱電流時的器件電壓

上一循環(huán)中施加的加熱電流

功率階躍

關閉加熱電流之后的器件電壓

開啟加熱電流之前的器件電壓

上一功率循環(huán)期間的最高結(jié)溫

上一循環(huán)中的溫度波動

使用加熱功率進行標準化處理后的溫度變化

在使用10-A完成每250個循環(huán)后,測量從通電穩(wěn)態(tài)到斷電穩(wěn)態(tài)之間的全程熱瞬態(tài)變化,以創(chuàng)建結(jié)構(gòu)函數(shù)來研究熱量累積中的任何降級。同樣,持續(xù)進行實驗,直到所有IGBT失效。

不出所料,IGBT1最先失效,因為在器件降級過程中我們沒有對供電功率進行任何調(diào)節(jié)。有趣的是,在該熱結(jié)構(gòu)中,它沒有顯示出任何降級(圖6)。

41e75046-668e-11ef-89ff-92fbcf53809c.png

圖6.IGBT1在功率循環(huán)期間的結(jié)構(gòu)函數(shù)變化。

我們對實驗過程中的器件電壓變化進行了檢查。圖7顯示了IGBT1在加熱電流水平的正向電壓視為已經(jīng)歷的功率循環(huán)次數(shù)的函數(shù)。在前3000次循環(huán)中,可以觀察到電壓處于下降趨勢。導致初期這一變化的原因主要是器件平均溫度變化相對緩慢(只下降了5°C)。盡管器件電壓的溫度依賴性在電流低時呈現(xiàn)負特性,但在大電流水平下,正向電壓的溫度依賴性已變?yōu)檎怠?/p>

420b1526-668e-11ef-89ff-92fbcf53809c.png

圖7.IGBT1在加熱電流水平的正向電壓與已應用的功率循環(huán)數(shù)之間的關系。

在經(jīng)過約35,000次循環(huán)后,這一趨勢發(fā)生了變化,電壓開始緩慢升高。之后,器件電壓出現(xiàn)階躍式變化,同時,上升趨勢持續(xù)加快,直至最終器件失效。電壓的增大可歸因于封裝鍵合線的降級,因為結(jié)構(gòu)函數(shù)并沒有變化,這也解釋了在封裝鍵合線最終脫落時電壓出現(xiàn)的階躍式變化。電壓階躍高度的持續(xù)增加是隨著封裝鍵合線數(shù)量的減少,封裝鍵合線并聯(lián)電阻的不斷增大引起的。如果采用恒定電流的策略,封裝鍵合線的斷裂會增加剩余鍵合線中的電流密度,并且加速老化。

423a13c6-668e-11ef-89ff-92fbcf53809c.png

圖8.IGBT3在加熱電流水平的正向電壓與已應用的功率循環(huán)數(shù)之間的關系。

圖8顯示了IGBT3對應的同類型曲線,其中,器件電壓轉(zhuǎn)為增長趨勢的時間甚至更早,但由于通過調(diào)節(jié)加熱電流保持了結(jié)溫恒定,因此加熱電流也按比例相應地減小了。電流的降低減少了鍵合線的負載,延長了測得的壽命。

上述兩組實驗展示了不同的失效模式,并說明了不同的功率策略以及電氣設置對失效模式可能產(chǎn)生的影響。第一組實驗采用恒定循環(huán)時間,更貼切地反映了運行應用情況,證實了Simcenter Micred Power Tester能夠快速檢測出器件結(jié)構(gòu)(包括芯片貼裝和其他受損層)內(nèi)出現(xiàn)的退化現(xiàn)象。

第二組實驗清楚地證明封裝鍵合線出現(xiàn)了降級現(xiàn)象,因為我們觀察到器件的正向電壓出現(xiàn)了階躍式升高,但對于不同的供電選項(恒定電流、恒定加熱功率和恒定溫升),所有測試樣品的熱結(jié)構(gòu)函數(shù)都沒有發(fā)生變化。當然,由于樣品數(shù)量較少,所以只能做出比較保守的結(jié)論。但是,在Simcenter Micred Power Tester實驗中也可以發(fā)現(xiàn),測量結(jié)果可能因循環(huán)策略的不同而有所差異,基于某些策略而預測的功率器件使用壽命可能會高于其實際的使用壽命。

結(jié)語

可靠性是采用大功率電子產(chǎn)品的眾多行業(yè)關注的首要問題,對于元器件供應商、系統(tǒng)供應商和OEM而言,對這些模塊進行壽命期內(nèi)循環(huán)測試是必不可少的。Simcenter Micred Power Tester可為模塊供電以經(jīng)受數(shù)萬次(甚至數(shù)百萬次)的循環(huán),同時提供實時進行中的故障診斷。

從上面的例子中可以看出,Simcenter Micred Power Tester可用于輕松、清晰地識別由芯片粘接退化或鍵合線損壞引起的故障模式。這可顯著減少測試和實驗室診斷時間,也無需進行失效后分析或破壞性失效分析。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 測試
    +關注

    關注

    8

    文章

    4925

    瀏覽量

    125940
  • 半導體
    +關注

    關注

    334

    文章

    26311

    瀏覽量

    209944
  • 高功率
    +關注

    關注

    1

    文章

    182

    瀏覽量

    18351
收藏 人收藏

    評論

    相關推薦

    LabVIEW在齒輪箱故障診斷中的應用

    ,模擬了齒輪箱在不同故障狀態(tài)下的振動特征。通過對比時域ICA和頻域ICA方法,結(jié)果表明基于小波包的ICA方法在齒輪箱故障診斷中具有更高的準確可靠
    發(fā)表于 12-25 18:55

    復雜電子裝備潛隱性故障診斷關鍵技術研究

    討論了開展復雜電子裝備潛隱性故障診斷的重要意義,對復雜電子裝備潛在故障診斷技術的發(fā)展趨勢進行了分析,針對電子裝備潛隱性故障特征信息少、診斷難的問題,提出了考慮電子裝備多態(tài)
    發(fā)表于 05-13 09:08

    航空電子故障診斷新技術

    幾種航空電子故障診斷新技術,加強航空安全可靠性
    發(fā)表于 08-02 15:49

    【下載】《模擬電路故障診斷

    1.10 失效分析1.11 通過電話進行故障診斷——一個嚴酷的挑戰(zhàn)1.12 當計算機代替了故障診斷員時應當小心······下載鏈接:`
    發(fā)表于 10-20 17:56

    基于電流測試的混合電路故障診斷

    法等能解決一些測試診斷。但是,隨著混合信號電路的廣泛應用,高可靠性故障診斷提出了更高的要求。通過本課題,首先知道了靜態(tài)電流
    發(fā)表于 11-05 15:50

    GaN HEMT可靠性測試:為什么業(yè)界無法就一種測試標準達成共識

    如果基于GaN的HEMT可靠性的標準化測試方法迫在眉睫,那么制造商在幫助同時提供高質(zhì)量GaN器件方面正在做什么? GaN高電子遷移率晶體管(HEMT)由于其極高的耐高溫和高功率密度而
    發(fā)表于 09-23 10:46

    碳化硅功率器件可靠性之芯片研發(fā)及封裝篇

    ,封裝也是影響產(chǎn)品可靠性的重要因素?;?b class='flag-5'>半導體碳化硅分立器件采用AEC-Q101標準進行測試。目前碳化硅二管產(chǎn)品已通過AEC-Q101
    發(fā)表于 02-28 16:59

    使用工業(yè)熱特征提取方法提高大功率半導體測試故障診斷速度

    使用工業(yè)熱特征提取方法提高大功率半導體測試故障診斷速度
    發(fā)表于 01-06 14:50 ?0次下載

    使用工業(yè)熱特征提取方法提高大功率半導體測試故障診斷速度

    使用工業(yè)熱特征提取方法提高大功率半導體測試故障診斷速度
    發(fā)表于 05-24 17:12 ?0次下載

    基于模糊Petri網(wǎng)的GIS故障診斷可靠性分析

    基于模糊Petri網(wǎng)的GIS故障診斷可靠性分析_王濤云
    發(fā)表于 01-05 15:34 ?1次下載

    半導體可靠性測試有哪些

    半導體器件中,常見的一些加速因子為溫度、濕度、電壓和電流。 在大多數(shù)情況下,加速測試不改變故障的物理特性,但會轉(zhuǎn)移觀察時間。
    的頭像 發(fā)表于 07-13 14:47 ?3400次閱讀
    <b class='flag-5'>半導體</b><b class='flag-5'>可靠性</b><b class='flag-5'>測試</b>有哪些

    使用工業(yè)熱特征提取方法提高大功率半導體測試故障診斷速度

    隨著消費者和工業(yè)電子系統(tǒng)不斷增長的能源需求,電子電力元器件供應商以及OEM 面臨著為航空、電動車、火車、發(fā)電設備以及可重復使用能源生產(chǎn)提供高可靠性系統(tǒng)的挑戰(zhàn)。獨一無二的 Simcenter
    的頭像 發(fā)表于 07-18 10:31 ?481次閱讀
    使用<b class='flag-5'>工業(yè)</b><b class='flag-5'>級</b>熱特征提取方法提高大<b class='flag-5'>功率</b><b class='flag-5'>半導體</b>的<b class='flag-5'>測試</b>與<b class='flag-5'>故障診斷</b>速度

    龍騰半導體建有功率器件可靠性與應用實驗中心

    ? 走進龍騰實驗室 功率器件可靠性試驗測試項目系列專題(一) ? 可靠性實驗室介紹 ? 龍騰半導體建有
    的頭像 發(fā)表于 09-12 10:23 ?1083次閱讀
    龍騰<b class='flag-5'>半導體</b>建有<b class='flag-5'>功率</b>器件<b class='flag-5'>可靠性</b>與應用實驗中心

    半導體可靠性測試項目有哪些

    半導體可靠性測試主要是為了評估半導體器件在實際使用過程中的可靠性和穩(wěn)定性。這些測試項目包括多種
    的頭像 發(fā)表于 12-20 17:09 ?1829次閱讀

    半導體封裝的可靠性測試及標準介紹

    本文將介紹半導體可靠性測試及標準。除了詳細介紹如何評估和制定相關標準以外,還將介紹針對半導體封裝預期壽命、半導體封裝在不同外部環(huán)境中的
    的頭像 發(fā)表于 01-13 10:24 ?4462次閱讀
    <b class='flag-5'>半導體</b>封裝的<b class='flag-5'>可靠性</b><b class='flag-5'>測試</b>及標準介紹