0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

電氣工程師開關電源問題簡答

sBue_gongkongBB ? 來源:未知 ? 作者:易水寒 ? 2017-12-21 15:38 ? 次閱讀

作為一個電氣工程師,我們電子電路設計當中不可或缺的都要用到電源!而開關電源對我們電路設計來說又是那么的重要!今天給大家?guī)黹_關電源問答

問題一:開關電源為什么常常選擇65K或者100K左右范圍作為開關頻率,有的人會說IC廠家都是生產這樣的IC,當然這也有原因。每個電源的開關頻率會決定什么?

回答1:應該從這里去思考原因。還會有人說頻率高了EMC不好過,一般來說是這樣,但這不是必然,EMC與頻率有關系,但不是必然。想象我們的電源開關頻率 提高了,直接帶來的影響是什么?當然是MOS開關損耗增大,因為單位時間開關次數(shù)增多了。如果頻率減小了會帶來什么?開關損耗是減小了,但是我們的儲能器 件單周期提供的能量就要增多,勢必需要的變壓器磁性要更大,儲能電感要更大了。選取在65K到100K左右就是一個比較合適的經(jīng)驗折中,電源就是在折中合 理化折中進行

回答2:假如在特殊情形下,輸入電壓比較低,開關損耗已經(jīng)很小了,不在乎這點開關損耗嗎,那我們就可以提高開關頻率,起到減小磁性器件體積的目的

問題二:LLC中為什么我們常在二區(qū)設計開關頻率?一區(qū)和三區(qū)為什么不可以?有哪些因素制約呢?或者如果選取一區(qū)和三區(qū)作為開關頻率會有什么后果呢?

回答1:LLC的原理是利用感性負載隨開關頻率的增大而感抗增大,來進行調節(jié)輸出電壓的,也就是PFM調制。并且MOS管開通損耗ZVS比ZCS小,一區(qū)是 容性負載區(qū),自然不可取。那么三區(qū),開關頻率大于諧振頻率,這個仍是感性負載區(qū),按道理MOS實現(xiàn)ZVS沒有問題,確實如此。但是我們不能忽略副邊的輸出 二極管關斷。也就是原邊MOS管關斷時,諧振電流并沒有減小到和勵磁電流相等,實現(xiàn)副邊整流二極管軟關斷。這也是我們通常也不選擇三區(qū)的原因。

問題三:當我們反激的占空比大于50%會帶來什么?好的方面有哪些?不好的方面有哪些?

回答1:反激的占空比大于50%意味著什么,占空比影響哪些因素?第一:占空比設計過大,首先帶來的是匝比增大,主MOS管的應力必然提高。一般反激選取600V或650V以下的MOS管,成本考慮。占空比過大勢必承受不起。

回答2:很重要的是很多人知道,需要斜坡補償,否則環(huán)路震蕩。不過這也是有條件的,右平面零點的產生需要工作在CCM模式下,如果設計在DCM模式 下也就不存在這一問題了。這也是小功率為什么設計在DCM模式下的其中一個原因。

回答3:當然在特殊情形下也需要將占空比設計在大于50%,單位周期內傳遞的能量增加,可以減小開關頻率,達到提升效率的目的,如果反激為了效率做高,可以考慮這一方法。

問題四:反激電源如果要做到一定的效率,需要從哪些方面著手?準諧振?同步整流?

回答1:反激的一大劣勢就是效率問題,改善效率有哪些途徑可以思考的呢?減小損耗是必然的,損耗的點有開關管,變壓器,輸出整流管,這是主要的三個部分。

開關管我們知道反激主要是PWM調制的硬開關居多,開關損耗是我們的一大難點,好在軟開關的出現(xiàn)看到了希望。反激無法向LLC那樣做到全諧振,那只 能朝準諧振去發(fā)展(部分時間段諧振),這樣的IC也有很多問世,我司用的較多是NCP1207,通過在MOS管關斷后,下一次開通前1腳檢測VCC電壓過 零后,然后在一個設定時間后開通下一周期。

變壓器的損耗如何做到最小,完美使用的變壓器后面問題會涉及到。

同步整流一般在輸出大電流情況下,副邊整流流二極管,哪怕用肖特基損耗依然會很大,這時候采用同步整流MOS替代肖特基二極管。有些人會說這樣成本高不如用LLC,或者正激呢,當然沒有最好的,只有更合適的。

問題五: 我們選擇拓撲時需要考慮哪些方面的因素?各種拓撲使用環(huán)境及優(yōu)缺點?

回答1:

反激特點:適用在小于150W,理論這么說,實際大于75W就很少用,不談很特殊的情況。反激的有點成本低,調試容易(相對于半橋,全橋),主要是 磁芯單向勵磁,功率由局限性,效率也不高,主要是硬開關,漏感大等等原因。全電壓范圍(85V-264V)效率一般在80%以下,單電壓達到80%很容 易。

正激特點:功率適中,可做中小功率,功率一般在200W以下,當然可以做很大功率,只是不常常這么做,原因是正激和反激一樣單向勵磁,做大功率磁芯 體積要求大,當然采用2個變壓器串并聯(lián)的也有,注意只談一般情形,不誤導新人。正激有點,成本適中,當然比反激高,優(yōu)點效率比反激高,尤其采用有源箝位做 原邊吸收,將漏感能量重新利用。

半橋:目前比較火的是LLC諧振半橋,中小功率,大功率通吃型。(一般大于100W小于3KW)。特點成本比反激正激高,因為多用了1個MOS管 (雙向勵磁)和1個整流管,控制IC也貴,環(huán)路設計業(yè)復雜(一般采用運放,尤其還要做電流環(huán))。優(yōu)點:采用軟開關,EMC好,效率極高,比正激高,我做過 960W LLC,效率可達96%以上(全電壓)(當然PFC是采用無橋方式)。其它半橋我不推薦,至少我不會去用,比較老的不對稱橋,很難做到軟開關,LLC成熟 以前用的多,現(xiàn)在很少用,至少艾默生等大公司都傾向于LLC,跟著主流走一般都不會錯。

全橋:一般用在大于2KW以上,首推移相全橋,特點,雙向勵磁,MOS管應力小,比LLC應力小一半,大功率尤其輸入電壓較高時,一般用移相全橋, 輸入電壓低用LLC。成本特別高,比LLC還多用2個MOS。這還不是首要的,主要是驅動復雜,一般的IC驅動能力都達不到,要將驅動放大,采用隔離變壓 器驅動,這里才是成本高的另一方面。

推挽:應用在大功率,尤其是輸入電壓低的大功率場合,特點電壓應力高,當然電流應力小,大功率用全橋還是推挽一般看輸入電壓。變壓器多一個繞組,管子應力要求高,當然常提到的磁偏磁也需要克服。這個我真沒用過,沒涉及電力電源,很難用到它的時候。

問題六:電源的元器件你懂多少?MOS管結電容多大,對哪些有影響?RDS跟溫度是什么關系?肖特基反向恢復電流影響什么?電容的ESR會帶來哪些影響?

回答1:電源中的設計的器件類型很多,主要有半導體器件如:MOS管,三極管,IC,運放,二極管,光耦等;磁性器件:電感,變壓器,磁珠等;電容:Y電容,X電容,瓷片電容,電解電容,貼片電容等;每種器件都有其規(guī)格,極限參數(shù)。

常規(guī)的參數(shù)在我們選型很容易把握,例如選取MOS管,耐壓參數(shù)肯定會考慮,額定電流也會考慮,導通電阻我們會考慮,但還有一些寄生參數(shù)以及一些隨溫 度變化特性的參數(shù)卻很少去注意,或者只有在發(fā)現(xiàn)問題的時候才會去找。導通電阻Rds(on)隨溫度升高其阻值是變大的,設計MOS管損耗時要考慮到其工作 的環(huán)境溫度。結電容影響到我們的開通損耗,也會影響到EMC。

肖特基二極管耐壓,額定電流一般很好注意,有些參數(shù)例如導通壓降在溫度升高時會減小,反向恢復時間短,不過漏電流大(尤其是考慮到高溫時漏電流影響就更大了),寄生電感會引起關斷尖峰很高。

電容一個重要參數(shù)ESR,在計算紋波時通常會考慮,ESR一般與C的關聯(lián)是很大的,不過不同廠家的品質因素影響也是很巨大,一定要具體分清楚。一般估算公司可參考:ESR=10/(C的0.73次方),電容在高溫時壽命會縮短,低溫時容量會減小,漏電流也會增加等等。


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電源
    +關注

    關注

    184

    文章

    17484

    瀏覽量

    249158
  • LLC
    LLC
    +關注

    關注

    36

    文章

    557

    瀏覽量

    76632

原文標題:開關電源問答!

文章出處:【微信號:gongkongBBS,微信公眾號:工控網(wǎng)智造工程師】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    電氣工程師最喜歡用的編程方法

    了再洗碗。那在自動化行業(yè)中設備也要遵循一點的邏輯。就比如這個最常用的機械手動作(如圖1),它也是一步步將物料搬運到指定位置。針對動作邏輯,電氣工程師最喜歡用的編程方法就是 “賦值比較法” 。 那針對這種方法,我們
    的頭像 發(fā)表于 10-29 09:32 ?126次閱讀
    <b class='flag-5'>電氣工程師</b>最喜歡用的編程方法

    同昌源儀器|如何測試開關電源

    如何測試開關電源表征開關模式電源的工作需要廣泛的測量。大部分所需的測量都可以使用示波器完成。然而,許多工程師仍然手動在示波器上進行這些測量,這是非常耗時的。現(xiàn)在許多中高端示波器都提供
    的頭像 發(fā)表于 09-04 08:05 ?160次閱讀
    同昌源儀器|如何測試<b class='flag-5'>開關電源</b>

    llc開關電源和普通開關電源的區(qū)別

    LLC開關電源和普通開關電源在多個方面存在顯著的區(qū)別。以下是對兩者主要區(qū)別的分析: 一、電路結構和工作原理 LLC開關電源 : 電路結構 :LLC開關電源采用LLC諧振拓撲電路,該電路
    的頭像 發(fā)表于 08-08 09:51 ?1105次閱讀

    饋電開關電源怎么接線

    饋電開關電源接線是一個復雜的過程,涉及到多個方面的知識,包括電氣工程、電子工程、自動化技術等。 一、饋電開關電源的基本原理 饋電開關電源是一
    的頭像 發(fā)表于 07-22 10:21 ?515次閱讀

    大廠電子工程師常見面試題#電子工程師 #硬件工程師 #電路知識 #面試題

    電子工程師電路
    安泰小課堂
    發(fā)布于 :2024年04月30日 17:33:15

    光耦在開關電源中的作用有哪些

    光耦作為一種光電轉換器件,廣泛應用于開關電源中。它可以隔離控制信號與被控信號,起到保護電路的作用,同時還具有隔離電氣噪聲、防止電氣干擾等作用。本文將詳細討論光耦在開關電源中的作用。 隔
    的頭像 發(fā)表于 03-29 16:37 ?1762次閱讀

    解析開關電源測試:安規(guī)測試標準與要求

    安規(guī)測試是對開關電源進行電氣性能、安全性能等檢測,確保開關電源符合規(guī)定并且安全可靠,為開關電源的質量把關。那么開關電源安規(guī)測試有哪些測試要求
    的頭像 發(fā)表于 03-11 14:57 ?1586次閱讀

    優(yōu)秀電源工程師需要哪些必備技能?

    隨著電源市場的不斷擴張,開關電源行業(yè)飛速發(fā)展,企業(yè)對電源工程師的需求日益增加,對電源工程師的技能
    發(fā)表于 01-29 11:29

    開關電源EMC設計中的常見誤區(qū)有哪些

    。本文將詳細介紹開關電源EMC設計中的常見誤區(qū)及相應的解決方法。 一、忽視濾波器設計誤區(qū)分析:在開關電源的設計過程中,有些工程師可能會忽視濾波器的設計,認為濾波器對EMC性能的影響不大。 解決方法:濾波器是
    的頭像 發(fā)表于 12-30 16:41 ?865次閱讀

    優(yōu)秀電源工程師的必備技能大揭秘!

    隨著電源市場的不斷擴張,開關電源行業(yè)飛速發(fā)展,企業(yè)對電源工程師的需求日益增加,對電源工程師的技能
    的頭像 發(fā)表于 12-19 08:23 ?1655次閱讀
    優(yōu)秀<b class='flag-5'>電源</b><b class='flag-5'>工程師</b>的必備技能大揭秘!

    開關電源常用的幾種保護

    開關電源常用的幾種保護 開關電源是一種將交流電轉換為直流電的電子設備,廣泛應用于各種電子設備和系統(tǒng)中。由于開關電源在工作過程中會受到各種電氣和環(huán)境參數(shù)的影響,因此需要有一系列的保護措施
    的頭像 發(fā)表于 12-15 14:14 ?3133次閱讀

    運放PSRR與開關電源紋波分析的實際案例分享!

    工程師使用開關電源為OPA132正電源供電,LDO為負電源供電,OPA132被設計為5倍同相放大, 但是在實測電路發(fā)現(xiàn)輸出一直有一個大約5mV的電壓波動,這是怎么回事呢?
    的頭像 發(fā)表于 12-12 15:01 ?1017次閱讀
    運放PSRR與<b class='flag-5'>開關電源</b>紋波分析的實際案例分享!

    mathcad 在電子和電氣工程中的應用

    和設計:Mathcad能夠幫助工程師進行電路設計、分析和優(yōu)化。它可以處理復雜的電路方程和電壓電流計算,并提供直觀的結果。工程師可以使用Mathcad來設計濾波器、放大器、振蕩器等電路,并通過參數(shù)優(yōu)化來實現(xiàn)設計要求。 信號處理:電子和電氣
    的頭像 發(fā)表于 12-07 15:07 ?1701次閱讀

    高頻開關電源與交流開關電源的區(qū)別有哪些?

    高頻開關電源與交流開關電源的區(qū)別有哪些? 高頻開關電源與交流開關電源是兩種不同類型的電源,它們在工作原理、應用領域和優(yōu)缺點等方面存在著一定的
    的頭像 發(fā)表于 11-16 11:22 ?1771次閱讀