0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

eigrp度量值修改

PoisonApple ? 來源:網絡整理 ? 2018-02-11 10:28 ? 次閱讀

EIGRP度量值

EIGRP使用度量值來確定到目的地的最佳路徑。對于每一個子網,EIGRP拓撲表包含一條或者多條可能的路由。每條可能的路由都包含各種度量值:帶寬,延遲等。EIGRP路由器根據(jù)度量值計算一個整數(shù)度量值,來選擇前往目的地的最佳路由。

當路由器選路的時候,計算出度量值最低的路徑,也就是FD,來確定最佳路由。當路由失效的時候,使用FS來選擇替代路由。

如何通過影響增強型內部網關路由協(xié)議 (EIGRP) 度量來創(chuàng)建首選路由。基于網絡圖中顯示的拓撲,本文檔介紹了幾種方法用于影響從客戶端傳輸?shù)椒掌鞯?IP 數(shù)據(jù)流,其中首選路徑為 R1》R2》R3。目標是使路徑 R1》R2》R4 成為僅在 R3 上出現(xiàn)故障時使用的備用路徑。

先決條件

要求

本文檔要求對 IP 路由和 EIGRP 路由有基本的了解。有關 IP 路由和 EIGRP 的詳細信息,請參閱以下文檔:

路由基本知識

增強的內部網關路由協(xié)議

使用的組件

本文檔中的信息基于以下軟件和硬件版本。

Cisco IOS? 軟件版本 9.21 及更高版本支持 EIGRP。本文檔中的信息基于 Cisco IOS 軟件版本 12.3(3)。

在所有的路由器(例如 Cisco 2500 系列和 Cisco 2600 系列)以及所有的第 3 層交換機上都可以配置 EIGRP。

本文檔中的信息都是基于特定實驗室環(huán)境中的設備編寫的。本文檔中使用的所有設備最初均采用原始(默認)配置。如果您使用的是真實網絡,請確保您已經了解所有命令的潛在影響。

規(guī)則

關于文件規(guī)則的更多信息,參考。

背景信息

有多種方法可用于通過影響 EIGRP 度量來設置首選路由。本文檔介紹了這些方法,并詳述了各自的優(yōu)缺點。本文檔還討論了修改帶寬所產生的影響,不過在本例中修改帶寬并不是改變路徑的可行手段。

eigrp度量值修改

單擊網絡圖可在單獨的瀏覽器窗口中進行顯示,以便在本文檔稍后部分用作參考。

本文檔中用于驗證 EIGRP 行為的兩條命令為 show ip eigrp topology 和 show ip eigrp topology network-ip subnet-mask。

如果有輸出一show ip eigrp topology命令或一show ip eigrp topology network-ip subnet-mask命令從您的Cisco設備,您能使用Cisco CLI分析器 (僅限注冊用戶)顯示潛在問題和修正。要使用Cisco CLI分析器 (僅限注冊用戶),您必須登陸和有在您的Web瀏覽器啟用的Javascript。

背景 - EIGRP 度量基本知識

EIGRP 更新包含五個度量:最低帶寬、延遲、負載、可靠性和最大傳輸單元 (MTU)。默認情況下,這五個度量中只有最低帶寬和延遲用于計算最佳路徑。與多數(shù)度量都不相同,最低帶寬設置為整個路徑的最低帶寬,并不反映路徑中的跳數(shù)或低帶寬鏈路數(shù)。延遲是一種累計值,會按照路徑中各網段延遲值的增加而增加。有關 EIGRP 度量的詳細信息,請參閱增強型內部網關路由協(xié)議白皮書。

可能的配置

這些配置可用于設置首選路由。

默認負載分擔配置

R1

R1# show run

Current configuration: 640 bytes

version 12.3

!

hostname R1

!

interface Serial0

no ip address

encapsulation frame-relay

!--- Enables Frame Relay encapsulation.

!

interface Serial0.201 point-to-point

!--- Enables a point-to-point link on the sub-interface.

ip address 10.1.1.1 255.255.255.0

frame-relay interface-dlci 201

!--- Assigns a data-link connection identifier (DLCI) !--- to a Frame Relay sub-interface.

!

router eigrp 1

network 10.0.0.0

!

end

注意: 幀中繼交換機在網絡圖中已隱藏。

R1# show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - ISIS level-1, L2 - ISIS level-2, * - candidate default

U - per-user static route, o - ODR

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 3 subnets

D 10.1.3.0 [90/2221056] via 10.1.1.2, 00:07:08, Serial0.201

D 10.1.2.0 [90/2195456] via 10.1.1.2, 00:07:08, Serial0.201

C 10.1.1.0 is directly connected, Serial0.201

R1# show ip eigrp topology 10.1.3.0 255.255.255.0

IP-EIGRP (AS 1): topology entry for 10.1.3.0/24

State is Passive, Query origin flag is 1, 1 Successor(s), FD is 2221056

Routing Descriptor Blocks:

10.1.1.2 (Serial0.201), from 10.1.1.2, Send flag is 0x0

Composite metric is (2221056/307200), Route is Internal

Vector metric:

Minimum bandwidth is 1544 Kbit

Total delay is 22000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 2

R2

R2# show run

Current configuration: 618 bytes

!

version 12.3

hostname R2

!

interface Ethernet0

ip address 10.1.2.2 255.255.255.0

no ip directed-broadcast

!

interface Serial0

no ip address

encapsulation frame-relay

!

interface Serial0.101 point-to-point

ip address 10.1.1.2 255.255.255.0

frame-relay interface-dlci 101

router eigrp 1

network 10.0.0.0

!

end

R2# show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - ISIS, L1 - ISIS level-1, L2 - ISIS level-2, * - candidate default

U - per-user static route, o - ODR

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 3 subnets

D 10.1.3.0 [90/307200] via 10.1.2.4, 00:03:47, Ethernet0

[90/307200] via 10.1.2.3, 00:03:48, Ethernet0

C 10.1.2.0 is directly connected, Ethernet0

C 10.1.1.0 is directly connected, Serial0.101

注意: R2 有兩個指向 10.1.3.0/24 的等價路徑,分別經過 R3 (10.1.2.3) 和 R4 (10.1.2.4)。

R2# show ip eigrp topology 10.1.3.0 255.255.255.0

IP-EIGRP (AS 1): topology entry for 10.1.3.0/24

State is Passive, Query origin flag is 1, 2 Successor(s), FD is 307200

Routing Descriptor Blocks:

10.1.2.3 (Ethernet0), from 10.1.2.3, Send flag is 0x0

Composite metric is (307200/281600), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 2000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 1

10.1.2.4 (Ethernet0), from 10.1.2.4, Send flag is 0x0

Composite metric is (307200/281600), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 2000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 1

注意: 兩個路徑的復合度量(距離/報告距離)相同。通往 R1 的可行距離 (FD) 會進行通告,隨后就成為 R1 的報告距離。

R3

R3# show run

Current configuration: 556 bytes

!

version 12.3

!

hostname R3

!

interface Ethernet0/0

ip address 10.1.2.3 255.255.255.0

no ip directed-broadcast

!

interface Ethernet0/1

ip address 10.1.3.3 255.255.255.0

no ip directed-broadcast

!

router eigrp 1

network 10.0.0.0

!

end

R3# show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - ISIS, L1 - ISIS level-1, L2 - ISIS level-2, ia - ISIS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 3 subnets

C 10.1.3.0 is directly connected, Ethernet0/1

C 10.1.2.0 is directly connected, Ethernet0/0

D 10.1.1.0 [90/20537600] via 10.1.2.2, 00:16:14, Ethernet0/0

R3# show ip eigrp topology 10.1.3.0 255.255.255.0

IP-EIGRP (AS 1): topology entry for 10.1.3.0/24

State is Passive, Query origin flag is 1, 1 Successor(s), FD is 281600

Routing Descriptor Blocks:

0.0.0.0 (Ethernet0/1), from Connected, Send flag is 0x0

Composite metric is (281600/0), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 1000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 0

10.1.2.4 (Ethernet0/0), from 10.1.2.4, Send flag is 0x0

Composite metric is (307200/281600), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 2000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 1

R3# show interface ethernet0/1

Ethernet0/1 is up, line protocol is up

Hardware is AmdP2, address is 0050.7329.52e1 (bia 0050.7329.52e1)

Internet address is 10.1.3.3/24

MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec,

reliability 255/255, txload 1/255, rxload 1/255

Encapsulation ARPA, loopback not set

Keepalive set (10 sec)

ARP type: ARPA, ARP Timeout 04:00:00

Last input 00:00:02, output 00:00:01, output hang never

Last clearing of “show interface” counters never

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0

Queueing strategy: fifo

Output queue: 0/40 (size/max)

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

291 packets input, 28402 bytes, 0 no buffer

Received 283 broadcasts, 0 runts, 0 giants, 0 throttles

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored

0 input packets with dribble condition detected

500 packets output, 50876 bytes, 0 underruns

0 output errors, 0 collisions, 2 interface resets

0 babbles, 0 late collision, 0 deferred

0 lost carrier, 0 no carrier

0 output buffer failures, 0 output buffers swapped out

R4

R4# show run

Current configuration: 549 bytes

!

version 12.3

!

hostname R4

!

interface Ethernet0/0

ip address 10.1.2.4 255.255.255.0

no ip directed-broadcast

interface Ethernet0/1

ip address 10.1.3.4 255.255.255.0

no ip directed-broadcast

!

router eigrp 1

network 10.0.0.0

end

R4# show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - ISIS, L1 - ISIS level-1, L2 - ISIS level-2, IA - ISIS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 3 subnets

C 10.1.3.0 is directly connected, Ethernet0/1

C 10.1.2.0 is directly connected, Ethernet0/0

D 10.1.1.0 [90/20537600] via 10.1.2.2, 00:17:08, Ethernet0/0

R4# show ip eigrp topology 10.1.3.0 255.255.255.0

IP-EIGRP (AS 1): topology entry for 10.1.3.0/24

State is Passive, Query origin flag is 1, 1 Successor(s), FD is 281600

Routing Descriptor Blocks:

0.0.0.0 (Ethernet0/1), from Connected, Send flag is 0x0

Composite metric is (281600/0), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 1000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 0

10.1.2.3 (Ethernet0/0), from 10.1.2.3, Send flag is 0x0

Composite metric is (307200/281600), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 2000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 1

更改 R4 的接口延遲參數(shù)

由于對延遲度量所做的更改會傳播至所有的下行路由器,因此對于以下兩種情況,更改接口延遲參數(shù)是影響路徑選擇的首選方法:

以太網段 10.1.3.0/24 僅包含服務器,且 10.1.3.0/24 子網后無其他子網。(此配置是服務器群的理想設置。)

您希望針對所有通過 10.1.3.0/24 網段上的 EIGRP 鄰居獲知的路由影響路徑選擇。

在進行任何更改前,請檢查接口上的延遲。

其當前設置與 R3 相同,如此處所示。

R4# show interface ethernet0/1

Ethernet0/1 is up, line protocol is up

Hardware is AmdP2, address is 0050.7329.5321 (bia 0050.7329.5321)

Internet address is 10.1.3.4/24

MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec,

reliability 255/255, txload 1/255, rxload 1/255

Encapsulation ARPA, loopback not set

Keepalive set (10 sec)

ARP type: ARPA, ARP Timeout 04:00:00

Last input 00:00:02, output 00:00:02, output hang never

Last clearing of “show interface” counters never

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0

Queueing strategy: fifo

Output queue: 0/40 (size/max)

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

284 packets input, 27914 bytes, 0 no buffer

Received 276 broadcasts, 0 runts, 0 giants, 0 throttles

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored

0 input packets with dribble condition detected

482 packets output, 49151 bytes, 0 underruns

0 output errors, 0 collisions, 2 interface resets

0 babbles, 0 late collision, 0 deferred

0 lost carrier, 0 no carrier

0 output buffer failures, 0 output buffers swapped out

更改 10.1.3.0/24 網段上的延遲值。

選擇新的延遲時,一定要謹慎。您肯定不希望延遲的增加導致 R2 不再將該路由視為可行后繼路由。

R4# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

R4(config)# interface ethernet0/1

R4(config-if)# delay 120

!--- Delay is entered in tens of microseconds.

R4(config-if)# end

R4#

確認此接口的延遲已更改為 1200 微秒。

R4# show interface ethernet0/1

Hardware is AmdP2, address is 0050.7329.5321 (bia 0050.7329.5321)

Internet address is 10.1.3.4/24

MTU 1500 bytes, BW 10000 Kbit, DLY 1200 usec,

reliability 255/255, txload 1/255, rxload 1/255

Encapsulation ARPA, loopback not set

Keepalive set (10 sec)

ARP type: ARPA, ARP Timeout 04:00:00

Last input 00:00:03, output 00:00:00, output hang never

Last clearing of “show interface” counters never

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0

Queueing strategy: fifo

Output queue: 0/40 (size/max)

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

345 packets input, 33508 bytes, 0 no buffer

Received 333 broadcasts, 0 runts, 0 giants, 0 throttles

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored

0 input packets with dribble condition detected

575 packets output, 57863 bytes, 0 underruns

0 output errors, 0 collisions, 2 interface resets

0 babbles, 0 late collision, 0 deferred

0 lost carrier, 0 no carrier

0 output buffer failures, 0 output buffers swapped out

確認 R2 只有一個“最佳”路由可以到達 10.1.3.0,也就是經過 R3。

R2# show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - ISIS, L1 - ISIS level-1, L2 - ISIS level-2, * - candidate default

U - per-user static route, o - ODR

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 3 subnets

D 10.1.3.0 [90/307200] via 10.1.2.3, 00:02:43, Ethernet0

C 10.1.2.0 is directly connected, Ethernet0

C 10.1.1.0 is directly connected, Serial0.101

R2# show ip eigrp topology 10.1.3.0 255.255.255.0

IP-EIGRP (AS 1): topology entry for 10.1.3.0/24

State is Passive, Query origin flag is 1, 1 Successor(s), FD is 307200

Routing Descriptor Blocks:

10.1.2.3 (Ethernet0), from 10.1.2.3, Send flag is 0x0

Composite metric is (307200/281600), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 2000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 1

10.1.2.4 (Ethernet0), from 10.1.2.4, Send flag is 0x0

Composite metric is (312320/286720), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 2200 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 1

show ip eigrp topology 命令顯示 R4 通告的延遲度量已按預期方式增加了 200(增至 2200 微秒)。這種延遲的增加使得兩個路由具有不同的成本,并使 R2 無法執(zhí)行負載均衡。

注意: 由于 R4 通告的距離 (286720) 小于 R2 通告的距離(可行距離 307200),因此該路徑被視為無環(huán)路路徑。由于 R4 通告的路徑被視為無環(huán)路路徑,因此是一種可行后繼路由,可在 R3 停止通告指向 10.1.3.0/24 的路由時立即安裝。

R1# show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - ISIS, L1 - ISIS level-1, L2 - ISIS level-2, * - candidate default

U - per-user static route, o - ODR

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 3 subnets

D 10.1.3.0 [90/2221056] via 10.1.1.2, 00:25:27, Serial0.201

D 10.1.2.0 [90/2195456] via 10.1.1.2, 00:25:27, Serial0.201

C 10.1.1.0 is directly connected, Serial0.201

R1# show ip eigrp topology 10.1.3.0 255.255.255.0

IP-EIGRP (AS 1): topology entry for 10.1.3.0/24

State is Passive, Query origin flag is 1, 1 Successor(s), FD is 2221056

Routing Descriptor Blocks:

10.1.1.2 (Serial0.201), from 10.1.1.2, Send flag is 0x0

Composite metric is (2221056/307200), Route is Internal

Vector metric:

Minimum bandwidth is 1544 Kbit

Total delay is 22000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 2

在 R4 上使用 offset-list 修改 R2 的復合度量

可通過在 R4 路由器上使用 offset-list 來修改 R2 的復合度量。如果 R4 上的 offset-list 值為 20,則 R2 上 R2-R4 路徑的復合度量將增加 20。于是,R2-R4 路徑成為相對于 R2-R3 的備用路徑。對于以下情況,使用 offset-list 是首選方法:

您只希望影響正在通告的特定路徑。

有其他一些路由器連接至 10.1.3.0/24 子網,而您不希望影響由這些路由器發(fā)起的路徑。

對 R4 上的 offset-list 進行配置,使所有以 10.1.3.x 開頭的路由的延遲都增加 (20)。

R4# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

R4(config)# access-list 99 permit 10.1.3.0 0.0.0.255

R4(config)# router eigrp 1

R4(config-router)# offset-list 99 out 20 e0/0

R4(config-router)# end

R4#

您在offset-list在R4的EIGRP拓撲表里不更改什么的此輸出中能看到。

只有在通告了路由的情況下,度量才會發(fā)生更改。

R4# show ip eigrp topology 10.1.3.0 255.255.255.0

IP-EIGRP (AS 1): topology entry for 10.1.3.0/24

State is Passive, Query origin flag is 1, 1 Successor(s), FD is 281600

Routing Descriptor Blocks:

0.0.0.0 (Ethernet0/1), from Connected, Send flag is 0x0

Composite metric is (281600/0), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 1000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 0

10.1.2.3 (Ethernet0/0), from 10.1.2.3, Send flag is 0x0

Composite metric is (307200/281600), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 2000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 1

在 R2 上,確認經過 R3 (10.1.2.3) 的路由還是唯一的最佳路徑。

R2# show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - ISIS, L1 - ISIS level-1, L2 - ISIS level-2, * - candidate default

U - per-user static route, o - ODR

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 3 subnets

D 10.1.3.0 [90/307200] via 10.1.2.3, 00:00:20, Ethernet0

C 10.1.2.0 is directly connected, Ethernet0

C 10.1.1.0 is directly connected, Serial0.101

EIGRP 拓撲表反映了 R4 (10.1.2.4) 中延遲的增加情況。

R4 可行距離 (281600) + R4 offset-list (20) = R4 報告距離 (281620)。

注意: Cisco IOS 軟件版本 12.0(7) 的表面缺陷使得增加的延遲無法精確反映在此處所示輸出內容的 Total Delay 部分中。

DDTS說明

CSCdp36097(僅限注冊用戶)EIGRP :offset-list 添加錯誤的延遲值

R2# show ip eigrp topology 10.1.3.0 255.255.255.0

IP-EIGRP (AS 1): topology entry for 10.1.3.0/24

State is Passive, Query origin flag is 1, 1 Successor(s), FD is 307200

Routing Descriptor Blocks:

10.1.2.3 (Ethernet0), from 10.1.2.3, Send flag is 0x0

Composite metric is (307200/281600), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 2000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 1

10.1.2.4 (Ethernet0), from 10.1.2.4, Send flag is 0x0

Composite metric is (307220/281620), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 2000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 1

更改 R2 的管理距離

也可以在 R2 上更改從 R4 所獲知路由的管理距離,以此更改路徑選擇過程。相比其他方法,這種方法不太理想。由于下述原因,這種方法會增加出現(xiàn)路由環(huán)路的可能性:

管理距離通常用于確定獲知路由的方法。如果設置有誤,單個路由器將無法選擇重分配的路由以代替實際最佳路徑。

管理距離不會傳播至其他路由器。路由協(xié)議會取決于這樣一種事實:在采用同一組參數(shù)時,所有路由器都會選擇同一種路徑。更改單個路由器上的參數(shù)會導致路由環(huán)路。

更改 R2 的配置,使得在接收到 R4 (10.1.2.4) 發(fā)出的子網 10.1.3.0/24 路由更新時,管理距離將增至 91。

選擇 91 是因為它比內部路由的默認 EIGRP 管理距離 (90) 大 1。EIGRP 外部路由(重分配到 EIGRP 中的路由)的默認管理距離為 170。參考在默認值的本文所有路由協(xié)議。

R2# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

R2(config)# access-list 99 permit 10.1.3.0 0.0.0.255

R2(config)# router eigrp 1

R2(config-router)# distance 91 10.1.2.4 0.0.0.0 99

R2(config-router)# end

R2#

此時,您可能需要發(fā)出 clear ip route 命令,以便讓所做的更改生效。

注意: 現(xiàn)在只有一個路徑可以到達 10.1.3.0/24,也就是經過 R3 (10.1.2.3) 的路徑。

R2# show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - ISIS, L1 - ISIS level-1, L2 - ISIS level-2, * - candidate default

U - per-user static route, o - ODR

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 3 subnets

D 10.1.3.0 [90/307200] via 10.1.2.3, 00:05:28, Ethernet0

C 10.1.2.0 is directly connected, Ethernet0

C 10.1.1.0 is directly connected, Serial0.101

注意: EIGRP 拓撲表的內容沒有任何更改。

R2# show ip eigrp topology 10.1.3.0 255.255.255.0

IP-EIGRP (AS 1): topology entry for 10.1.3.0/24

State is Passive, Query origin flag is 1, 1 Successor(s), FD is 307200

Routing Descriptor Blocks:

10.1.2.3 (Ethernet0), from 10.1.2.3, Send flag is 0x0

Composite metric is (307200/281600), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 2000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 1

10.1.2.4 (Ethernet0), from 10.1.2.4, Send flag is 0x0

Composite metric is (307200/281600), Route is Internal

Vector metric:

Minimum bandwidth is 10000 Kbit

Total delay is 2000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 1

潛在問題

如果使用不當,此方法會導致一種潛在問題;為了說明這一點,請設想這種情形:在 11.0.0.0/8 網絡中,R1 和 R2 正在運行開放最短路徑優(yōu)先 (OSPF) 協(xié)議,管理距離為 110。再設想對于 11.1.1.0/24,R4 有一個靜態(tài)路由指向 R2 (10.1.2.2)。R4 正在將靜態(tài)路由重分配到 EIGRP 中,以使 10.1.3.0/24 上的一些新路由器能到達 11.1.1.0/24。

通常,R2 從 R4 接收 11.1.1.0/24 的 EIGRP 外部路由,管理距離為 170。由于此距離大于 OSPF 路由距離 (110),因此不予安裝。

此輸出是上面所用的 distance 命令的錯誤配置示例。

R2# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

R2(config)# access-list 99 permit 11.1.1.0 0.0.0.255

R2(config)# router eigrp 1

R2(config-router)# distance 91 10.1.2.4 0.0.0.0 99

R2(config-router)# end

R2#

這種配置為子網 11.1.1.0/24 在 R2 和 R4 之間創(chuàng)建了一個路由環(huán)路。現(xiàn)在,R4 通告的 11.1.1.0/24 路由是 R2 的首選路由。這是因為此管理距離 (91) 小于 OSPF 路由的管理距離 (110)。

更改 R2 的帶寬

不鼓勵使用帶寬來影響 EIGRP 路徑,原因有兩個:

除影響 EIGRP 度量外,更改帶寬還會造成其他影響。例如,服務質量 (QoS) 也和接口帶寬有關。

EIGRP 降至使用一半的配置帶寬。降低帶寬會引起一些問題,例如由于降低了流量導致 EIGRP 鄰居無法獲得 hello 數(shù)據(jù)包。

更改延遲不會影響其他協(xié)議,也不會導致 EIGRP 流量降低。

在進行任何更改前,請檢查 R1 的 EIGRP 拓撲表。

R1# show ip eigrp topology 10.1.3.0 255.255.255.0

IP-EIGRP (AS 1): topology entry for 10.1.3.0/24

State is Passive, Query origin flag is 1, 1 Successor(s), FD is 2221056

Routing Descriptor Blocks:

10.1.1.2 (Serial0.201), from 10.1.1.2, Send flag is 0x0

Composite metric is (2221056/307200), Route is Internal

Vector metric:

Minimum bandwidth is 1544 Kbit

Total delay is 22000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 2

檢查 R2 上 ethernet0 接口的起始值。

R2# show interface ethernet0

Ethernet0 is up, line protocol is up

Hardware is Lance, address is 0010.7b3c.6786 (bia 0010.7b3c.6786)

Internet address is 10.1.2.2/24

MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec, rely 255/255, load 1/255

Encapsulation ARPA, loopback not set, keepalive set (10 sec)

ARP type: ARPA, ARP Timeout 04:00:00

Last input 00:00:01, output 00:00:02, output hang never

Last clearing of “show interface” counters never

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0

Queueing strategy: fifo

Output queue: 0/40 (size/max)

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

1938 packets input, 165094 bytes, 0 no buffer

Received 1919 broadcasts, 0 runts, 0 giants, 0 throttles

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

0 input packets with dribble condition detected

1482 packets output, 124222 bytes, 0 underruns

0 output errors, 0 collisions, 18 interface resets

0 babbles, 0 late collision, 0 deferred

0 lost carrier, 0 no carrier

0 output buffer failures, 0 output buffers swapped out

降低帶寬,以觀察對 R1 產生的影響。

R2# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

R2(config)# interface ethernet0

R2(config-if)# bandwidth 5000

R2(config-if)# end

R2#

確認更改。

R2# show interface ethernet0

Ethernet0 is up, line protocol is up

Hardware is Lance, address is 0010.7b3c.6786 (bia 0010.7b3c.6786)

Internet address is 10.1.2.2/24

MTU 1500 bytes, BW 5000 Kbit, DLY 1000 usec, rely 255/255, load 1/255

Encapsulation ARPA, loopback not set, keepalive set (10 sec)

ARP type: ARPA, ARP Timeout 04:00:00

Last input 00:00:02, output 00:00:01, output hang never

Last clearing of “show interface” counters never

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0

Queueing strategy: fifo

Output queue: 0/40 (size/max)

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

1995 packets input, 169919 bytes, 0 no buffer

Received 1969 broadcasts, 0 runts, 0 giants, 0 throttles

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

0 input packets with dribble condition detected

1525 packets output, 127831 bytes, 0 underruns

0 output errors, 0 collisions, 18 interface resets

0 babbles, 0 late collision, 0 deferred

0 lost carrier, 0 no carrier

0 output buffer failures, 0 output buffers swapped out

確認 EIGRP 拓撲表中也有變化。

R2# show ip eigrp topology 10.1.3.0 255.255.255.0

IP-EIGRP (AS 1): topology entry for 10.1.3.0/24

State is Passive, Query origin flag is 1, 2 Successor(s), FD is 563200

Routing Descriptor Blocks:

10.1.2.4 (Ethernet0), from 10.1.2.4, Send flag is 0x0

Composite metric is (563200/281600), Route is Internal

Vector metric:

Minimum bandwidth is 5000 Kbit

Total delay is 2000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 1

10.1.2.3 (Ethernet0), from 10.1.2.3, Send flag is 0x0

Composite metric is (563200/281600), Route is Internal

Vector metric:

Minimum bandwidth is 5000 Kbit

Total delay is 2000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 1

查看對 R1 中的 EIGRP 拓撲表產生的影響。

R1# show ip eigrp topology 10.1.3.0 255.255.255.0

IP-EIGRP (AS 1): topology entry for 10.1.3.0/24

State is Passive, Query origin flag is 1, 1 Successor(s), FD is 2221056

Routing Descriptor Blocks:

10.1.1.2 (Serial0.201), from 10.1.1.2, Send flag is 0x0

Composite metric is (2221056/563200), Route is Internal

Vector metric:

Minimum bandwidth is 1544 Kbit

Total delay is 22000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 2

無變化,這是因為 R1 和 R2 之間的幀中繼連接仍是最低速的鏈路。只有將 R2 的 ethernet0 接口帶寬降至 1544 以下,您才能看到變化。

將 R2 的 ethernet0 接口帶寬降至 1000。

R2# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

R2(config)# interface ethernet 0

R2(config-if)# bandwidth 1000

R2(config-if)# end

R2#

查看對 R1 中的 EIGRP 拓撲表產生的影響。

R1# show ip eigrp topology 10.1.3.0 255.255.255.0

IP-EIGRP (AS 1): Topology entry for 10.1.3.0/24

State is Passive, Query origin flag is 1, 1 Successor(s), FD is 312320

Routing Descriptor Blocks:

10.1.1.2 (Serial0.201), from 10.1.1.2, Send flag is 0x0

Composite metric is (3123200/2611200), Route is Internal

Vector metric:

Minimum bandwidth is 1000 Kbit

Total delay is 22000 microseconds

Reliability is 255/255

Load is 1/255

Minimum MTU is 1500

Hop count is 2

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • EIGRP
    +關注

    關注

    0

    文章

    13

    瀏覽量

    9096
  • eigrp度量值
    +關注

    關注

    0

    文章

    1

    瀏覽量

    1368
收藏 人收藏

    評論

    相關推薦

    STM32CubeIDE如何調試中修改變量值?

    使用STM32CubeIDE中發(fā)現(xiàn)調試部分功能不能滿足。目前調試中最不方便的就是,不斷點,在運行狀態(tài)時,不能實時修改全局變量值。 但是目前沒法找到該功能,最多只有l(wèi)ive expression,只能看不能改。 而keilMDK卻可以實現(xiàn)實時
    發(fā)表于 04-15 06:44

    EIGRP托管服務功能介紹與校園網絡工程方案

    EIGRP托管服務功能介紹與校園網絡工程方案很全面的資料 [hide]EIGRP托管服務功能介紹與校園網絡工程方案.rar[/hide]
    發(fā)表于 12-12 15:03

    修改量值要求描述

    修改量值要求描述:循環(huán)切換選擇時、分、秒,對應的顯示單元 1 1秒間隔亮滅,通過 “ 加、減 ” 按鍵調整當前選擇的時間單位我的想法:針對閃爍:使用一個1s取反一次的變量即可修改量值
    發(fā)表于 01-11 08:28

    基于AHP度量模型的安全管理度量方法

    本文以GB17859、ISO/IEC17799 等相關標準作為指導依據(jù),針對信息安全管理績效的 度量問題提出了一套基于AHP 模型的安全管理度量方法,并重點闡述了度量模型中度量要素、
    發(fā)表于 06-18 09:36 ?28次下載

    構件內聚性度量方法研究

    構件的內聚性度量是衡量構件質量的一個重要指標。度量構件內聚度的經典方法程序切片,由于切片劃分的不同,其度量值不同。本文不僅很好地度量構件的內聚度且
    發(fā)表于 01-09 11:58 ?7次下載

    EIGRP路由器基礎實驗

    實驗目的: 1、掌握EIGRP 的基本配置
    發(fā)表于 09-24 15:45 ?19次下載

    EIGRP和OSPF協(xié)議課件下載

    EIGRP基礎理論 Basic Theory of EIGRP (Enhanced Interior Gateway Routing Protocol) 2. OSPF基礎理論 Basic Theory of OSPF (Open Shortest Path First
    發(fā)表于 04-14 15:01 ?0次下載
    <b class='flag-5'>EIGRP</b>和OSPF協(xié)議課件下載

    EIGRP協(xié)議及配置課件

    一.實驗目的 1 理解EIGRP協(xié)議的主要特征 2 理解EIGRP協(xié)議的工作原理 3 熟練掌握EIGRP協(xié)議的配置方法和調試方法 二.實驗要求 要求每位學生單獨配置自己的路由器,完成EIGRP
    發(fā)表于 04-14 15:03 ?0次下載
    <b class='flag-5'>EIGRP</b>協(xié)議及配置課件

    eigrp和ospf的區(qū)別

    EIGRP即 增強內部網關路由協(xié)議。也翻譯為 加強型內部網關路由協(xié)議。EIGRP是Cisco公司的私有協(xié)議。OSPF是一個內部網關協(xié)議,用于在單一自治系統(tǒng)內決策路由。是對鏈路狀態(tài)路由協(xié)議的一種實現(xiàn),隸屬內部網關協(xié)議
    的頭像 發(fā)表于 02-10 11:09 ?9166次閱讀
    <b class='flag-5'>eigrp</b>和ospf的區(qū)別

    eigrp的基本配置及配置命令

    EIGRP: 即 增強內部網關路由協(xié)議。也翻譯為 加強型內部網關路由協(xié)議。 EIGRP是Cisco公司的私有協(xié)議。 EIGRP結合了鏈路狀態(tài)和距離矢量型路由選擇協(xié)議的Cisco專用協(xié)議,采用彌散修正算法來實現(xiàn)快速收斂,
    的頭像 發(fā)表于 02-10 11:57 ?1.7w次閱讀
    <b class='flag-5'>eigrp</b>的基本配置及配置命令

    eigrp配置實例

    EIGRP采用DUAL來實現(xiàn)快速收斂。運行EIGRP的路由器存儲了鄰居的路由表,因此能夠快速適應網絡中的變化。如果本地路由表中沒用合適的路由且拓撲表中沒用合適的備用路由,EIGRP將查詢鄰居以發(fā)現(xiàn)替代路由。
    的頭像 發(fā)表于 02-11 09:00 ?6388次閱讀
    <b class='flag-5'>eigrp</b>配置實例

    eigrp協(xié)議詳解

    EIGRP前身是IGRP協(xié)議,由于IGRP協(xié)議存在諸多缺點,因此Cisco對其進行了“增強(Enhance)”,注意,EIGRP是Cisco私有的協(xié)議,即只能在Cisco的路由器上運行,諸如華為等廠商的路由器可能不支持該協(xié)議。
    的頭像 發(fā)表于 02-11 09:22 ?8507次閱讀
    <b class='flag-5'>eigrp</b>協(xié)議詳解

    eigrp metric計算公式

    EIGRP選擇一條主路由(最佳路由)和一條備份路由放在topology table(EIGRP到目的地支持最多6條鏈路)。它支持幾種路由類型:內部,外部(非EIGRP)和匯總路由.EIGRP
    的頭像 發(fā)表于 02-11 11:05 ?7804次閱讀
    <b class='flag-5'>eigrp</b> metric計算公式

    EIGRP的特性及包類型

    EIGRP(高級距離矢量路由協(xié)議),根據(jù)參數(shù)計算metric值,依靠metric值選取最優(yōu)路徑以及此有路徑。
    的頭像 發(fā)表于 10-31 16:45 ?1124次閱讀

    網絡實驗之EIGRP協(xié)議棧簡介

    EIGRP:Enhanced Interior Gateway Routing Protocol 即 增強內部網關路由協(xié)議。也翻譯為 加強型內部網關路由協(xié)議。
    的頭像 發(fā)表于 07-27 09:07 ?750次閱讀
    網絡實驗之<b class='flag-5'>EIGRP</b>協(xié)議棧簡介