0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機器學習如何應對失衡類別

zhKF_jqr_AI ? 來源:未知 ? 作者:鄧佳佳 ? 2018-03-05 11:53 ? 次閱讀

前言

實際應用中的分類問題往往不像教科書上人造的例子那樣齊整,類別往往存在某種程度上的失衡。Towards Data Science博主Devin Soni簡要介紹了應對失衡分類的常用方法。

介紹

大多數(shù)真實世界的分類問題都呈現(xiàn)出某種程度的類別失衡,即每個類別在數(shù)據(jù)集中的比例不同。恰當?shù)卣{(diào)整指標和方法以適應目標非常重要。否則,你可能最終會為一個對你的用例無意義的度量指標進行優(yōu)化。

例如,假設你有兩個類——A和B。A類占數(shù)據(jù)集的90%,B類占10%,但你最感興趣的是識別B類的實例。你可以每次都預測分類為A,這樣輕易就能達到90%的精確度,但對你的預期用例而言,這是一個無用的分類器。相反,經(jīng)過恰當?shù)匦实姆椒赡芫_度較低,但會有較高的真陽率(或召回),這才是你應該優(yōu)化的指標。在進行檢測時,這是常常發(fā)生的場景,例如檢測在線惡意內(nèi)容或醫(yī)療數(shù)據(jù)中的疾病標記。

現(xiàn)在我將討論幾種可以用來緩解類別失衡的技術(shù)。一些技術(shù)適用于大多數(shù)分類問題,而其他技術(shù)可能更適合具備特定的失衡水平的問題。本文將從二元分類的角度來討論這些問題,但大多數(shù)情況下,這些技術(shù)同樣適用于多類分類問題。本文同時假設目標是識別少數(shù)類別,否則,這些技術(shù)并不是真的很有必要。

指標

一般來說,這個問題涉及召回率(recall,真陽性實例被分類為陽性實例的百分比)和準確率(precision,被分類為真陽性的實例中確實是陽性的百分比)之間的折衷。當我們想要檢測少數(shù)類別實例時,我們通常更關(guān)心召回率而不是準確率,因為在檢測的情境中,錯過正面實例的成本通常高于錯誤地標記負面實例為正面實例。例如,如果我們試圖檢測惡意內(nèi)容,那么手動審核糾正被誤認為惡意內(nèi)容的正常內(nèi)容是微不足道的,但要識別甚至從未被標記為惡意內(nèi)容的內(nèi)容就要困難很多了。因此,比較適用于失衡分類問題的方法時,請考慮使用精確度之外的指標,例如召回率,準確率和AUROC。在選擇參數(shù)和模型時,切換優(yōu)化指標可能就足以提供偵測少數(shù)類別所需的表現(xiàn)。

成本敏感學習

在通常的學習中,我們平等對待所有錯誤分類,這在失衡分類問題中會導致問題,因為相比識別出主要類別,識別出少數(shù)類別并不會有額外的獎勵。成本敏感學習改變了這一點,使用函數(shù)C(p, t)(通常表示為矩陣)指定將t類實例錯誤分類為p類實例的成本。這讓我們可以給錯誤分類少數(shù)類別更多的懲罰,以便增加真陽率。一個常用的方案是讓成本等于類別在數(shù)據(jù)集中所占比例的倒數(shù)。這樣,當類別尺寸縮小時,懲罰會增加。

采樣

解決失衡數(shù)據(jù)集的一個簡單方法就是平滑它們,過采樣少數(shù)類別,或者欠采樣主要類別。這讓我們創(chuàng)建一個平衡的數(shù)據(jù)集,理論上能使分類器不偏向其中一個類。然而,這些簡單的采樣方法實際上存在缺陷。過采樣少數(shù)類別會導致模型過擬合,因為它會引入從已經(jīng)很小的實例池中抽取的重復實例。同樣,欠采樣主要類別可能最終導致遺漏體現(xiàn)了兩個類別之間的重要差別的重要實例。

還存在比簡單的過采樣或欠采樣更強大的采樣方法。最著名的例子是SMOTE,SMOTE通過構(gòu)建相鄰實例的凸組合來創(chuàng)建少數(shù)類別的新實例。如下圖所示,它有效地繪制了特征空間中少數(shù)點之間的線條,并沿著這些線條采樣。這使我們能夠平衡我們的數(shù)據(jù)集,而不會過多地過擬合,因為我們創(chuàng)建了新的合成示例,而沒有使用重復樣本。不過這并不能防止所有過擬合,因為這些合成數(shù)據(jù)點仍然是基于現(xiàn)有數(shù)據(jù)點創(chuàng)建的。


可視化SMOTE。陰影方塊:主要類別樣本;黑點:少數(shù)類別樣本;紅點:生成樣本

異常偵測

在更極端的情況下,將分類問題考慮成異常檢測(anomaly detection)問題可能會更好。在異常檢測問題中,我們假設有一個或一組“正?!钡臄?shù)據(jù)點分布,而任何與該分布足夠偏離的東西都是異常值。將分類問題置于異常檢測的框架下以后,我們將主要類別視為點的“正?!狈植?,將少數(shù)類別視為異常。有許多用于異常檢測的算法,例如聚類(clustering)方法,單類SVM(One-class SVM)和孤立森林(Isolation Forests)。


可視化用于異常檢測的聚類方法

結(jié)論

希望這些方法的某些組合可以讓你創(chuàng)建一個更好的分類器。像我之前說的那樣,這些技術(shù)中的某些技術(shù)更適合不同程度的失衡。例如,簡單的采樣技術(shù)可以讓你克服輕微失衡,而極端失衡可能需要異常檢測方法。基本上,對于這個問題,沒有包治百病的靈丹妙藥,你需要嘗試每種方法,看看它們應用到你的特定用例和指標的效果如何。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器學習
    +關(guān)注

    關(guān)注

    66

    文章

    8357

    瀏覽量

    132327

原文標題:機器學習如何應對失衡類別

文章出處:【微信號:jqr_AI,微信公眾號:論智】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    具身智能與機器學習的關(guān)系

    具身智能(Embodied Intelligence)和機器學習(Machine Learning)是人工智能領(lǐng)域的兩個重要概念,它們之間存在著密切的關(guān)系。 1. 具身智能的定義 具身智能是指智能體
    的頭像 發(fā)表于 10-27 10:33 ?248次閱讀

    人工智能、機器學習和深度學習存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設備。AI有很多技術(shù),但其中一個很大的子集是機器學習——讓算法從數(shù)據(jù)中學習。
    發(fā)表于 10-24 17:22 ?2425次閱讀
    人工智能、<b class='flag-5'>機器</b><b class='flag-5'>學習</b>和深度<b class='flag-5'>學習</b>存在什么區(qū)別

    【《時間序列與機器學習》閱讀體驗】+ 時間序列的信息提取

    之前對《時間序列與機器學習》一書進行了整體瀏覽,并且非常輕松愉快的完成了第一章的學習,今天開始學習第二章“時間序列的信息提取”。 先粗略的翻閱第二章,內(nèi)容復雜,充斥了大量的定義、推導計
    發(fā)表于 08-14 18:00

    【「時間序列與機器學習」閱讀體驗】+ 簡單建議

    這本書以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了一幅時間序列分析與機器學習融合應用的宏偉藍圖。作者不僅扎實地構(gòu)建了時間序列分析的基礎(chǔ)知識,更巧妙地展示了機器學習如何在這一領(lǐng)域發(fā)揮巨
    發(fā)表于 08-12 11:21

    機器學習中的數(shù)據(jù)分割方法

    機器學習中,數(shù)據(jù)分割是一項至關(guān)重要的任務,它直接影響到模型的訓練效果、泛化能力以及最終的性能評估。本文將從多個方面詳細探討機器學習中數(shù)據(jù)分割的方法,包括常見的分割方法、各自的優(yōu)缺點、
    的頭像 發(fā)表于 07-10 16:10 ?1215次閱讀

    深度學習在工業(yè)機器視覺檢測中的應用

    識別等任務。傳統(tǒng)的機器視覺檢測方法通常依賴于手工設計的特征和固定的算法,難以應對復雜多變的工業(yè)環(huán)境。而深度學習的引入,為工業(yè)機器視覺檢測帶來了新的突破和發(fā)展機遇。
    的頭像 發(fā)表于 07-08 10:40 ?930次閱讀

    人工智能、機器學習和深度學習是什么

    在科技日新月異的今天,人工智能(Artificial Intelligence, AI)、機器學習(Machine Learning, ML)和深度學習(Deep Learning, DL)已成為
    的頭像 發(fā)表于 07-03 18:22 ?1037次閱讀

    機器學習算法原理詳解

    機器學習作為人工智能的一個重要分支,其目標是通過讓計算機自動從數(shù)據(jù)中學習并改進其性能,而無需進行明確的編程。本文將深入解讀幾種常見的機器學習
    的頭像 發(fā)表于 07-02 11:25 ?701次閱讀

    機器學習在數(shù)據(jù)分析中的應用

    隨著大數(shù)據(jù)時代的到來,數(shù)據(jù)量的爆炸性增長對數(shù)據(jù)分析提出了更高的要求。機器學習作為一種強大的工具,通過訓練模型從數(shù)據(jù)中學習規(guī)律,為企業(yè)和組織提供了更高效、更準確的數(shù)據(jù)分析能力。本文將深入探討機器
    的頭像 發(fā)表于 07-02 11:22 ?525次閱讀

    深度學習與傳統(tǒng)機器學習的對比

    在人工智能的浪潮中,機器學習和深度學習無疑是兩大核心驅(qū)動力。它們各自以其獨特的方式推動著技術(shù)的進步,為眾多領(lǐng)域帶來了革命性的變化。然而,盡管它們都屬于機器
    的頭像 發(fā)表于 07-01 11:40 ?1125次閱讀

    機器學習的經(jīng)典算法與應用

    關(guān)于數(shù)據(jù)機器學習就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個經(jīng)典數(shù)據(jù)集,在統(tǒng)計學習機器學習領(lǐng)域都經(jīng)常被
    的頭像 發(fā)表于 06-27 08:27 ?1547次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學習</b>的經(jīng)典算法與應用

    請問PSoC? Creator IDE可以支持IMAGIMOB機器學習嗎?

    我的項目使用 POSC62 MCU 進行開發(fā),由于 UDB 模塊是需求的重要組成部分,所以我選擇了PSoC? Creator IDE 來進行項目開發(fā)。 但現(xiàn)在,由于需要擴展,我不得不使用機器學習模塊
    發(fā)表于 05-20 08:06

    機器學習8大調(diào)參技巧

    今天給大家一篇關(guān)于機器學習調(diào)參技巧的文章。超參數(shù)調(diào)優(yōu)是機器學習例程中的基本步驟之一。該方法也稱為超參數(shù)優(yōu)化,需要搜索超參數(shù)的最佳配置以實現(xiàn)最佳性能。
    的頭像 發(fā)表于 03-23 08:26 ?552次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學習</b>8大調(diào)參技巧

    如何使用TensorFlow構(gòu)建機器學習模型

    在這篇文章中,我將逐步講解如何使用 TensorFlow 創(chuàng)建一個簡單的機器學習模型。
    的頭像 發(fā)表于 01-08 09:25 ?896次閱讀
    如何使用TensorFlow構(gòu)建<b class='flag-5'>機器</b><b class='flag-5'>學習</b>模型

    供需失衡 碳酸鋰或跌破10萬元大關(guān)

    臨近年末,供需失衡及市場看空情緒籠罩下,碳酸鋰價格再次下跌。
    的頭像 發(fā)表于 11-28 15:08 ?679次閱讀