0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Ka頻段衛(wèi)星通信系統(tǒng)適用的信號鏈列舉及分析

YCqV_FPGA_EETre ? 來源:互聯(lián)網(wǎng) ? 作者:佚名 ? 2018-04-08 08:31 ? 次閱讀

隨著全球連接需求的增長,許多衛(wèi)星通信(satcom)系統(tǒng)日益采用Ka頻段,對數(shù)據(jù)速率的要求也水漲船高。目前,高性能信號鏈已經(jīng)能支持?jǐn)?shù)千兆瞬時帶寬,一個系統(tǒng)中可能有成百上千個收發(fā)器,超高吞吐量數(shù)據(jù)速率已經(jīng)成為現(xiàn)實。

另外,許多系統(tǒng)已經(jīng)開始從機(jī)械定位型靜態(tài)拋物線天線轉(zhuǎn)向有源相控陣天線。在增強(qiáng)的技術(shù)和更高集成度的推動下,元件尺寸得以大幅減小,已能滿足Ka頻段的需求。通過在沿干擾信號方向的天線方向圖中形成零位,相控陣技術(shù)還能提高降干擾性能。

下面將簡要描述現(xiàn)有收發(fā)器架構(gòu)中存在的一些折衷選項,以及不同類型的架構(gòu)在不同類型的系統(tǒng)中的適用性。本分析將分解介紹衛(wèi)星系統(tǒng)的部分關(guān)鍵技術(shù)規(guī)格,以及如何從這些系統(tǒng)級技術(shù)規(guī)格獲得收發(fā)器信號鏈層各組件的規(guī)格。

1

從系統(tǒng)級分析向下分解技術(shù)規(guī)格

從宏觀層面來看,衛(wèi)星通信系統(tǒng)需要維持一定的載噪比(CNR),此為鏈路預(yù)算計算的結(jié)果。維持該CNR可以保證一定的誤碼率(BER)。需要的CNR取決于多種因素,如糾錯、信息編碼、帶寬和調(diào)制類型。確定CNR要求之后,就可以依據(jù)高層系統(tǒng)要求向下分解得到各個接收器與發(fā)射器的技術(shù)規(guī)格。一般地,首先得到的是收發(fā)器的增益-系統(tǒng)噪聲溫度(G/T)品質(zhì)因數(shù)和發(fā)射器的有效全向輻射功率(EIRP)。

對于接收器,要從G/T得到低層接收器信號鏈規(guī)格,系統(tǒng)設(shè)計師需要知道天線增益和系統(tǒng)噪聲溫度,該值為天線指向與接收器噪聲溫度的函數(shù),如等式1所示?;诖耍梢杂玫仁?得到接收器溫度。

然后可以用等式3計算接收器信號鏈的噪聲指數(shù):

獲知接收器噪聲指數(shù)以后,可以進(jìn)行級聯(lián)分析,確保信號鏈?zhǔn)欠穹线@些必要技術(shù)規(guī)格的要求,以及是否需要進(jìn)行調(diào)整。

對于接收器,首先基于接收器的距離(地到衛(wèi)星或衛(wèi)星到地的距離)和接收器靈敏度確定需要的EIRP。獲知EIRP要求之后,需要在發(fā)射信號鏈的輸出功率與天線增益之間做出折衷。對于高增益天線,可以減小發(fā)射器的功耗和尺寸,但其代價是增加天線尺寸。EIRP通過等式4計算。

只要謹(jǐn)慎選擇信號鏈所用組件,就能維持輸出功率不變,并且不會導(dǎo)致其他重要參數(shù)下降,例如干擾其他系統(tǒng)的輸出噪聲和帶外射頻能量。

發(fā)射器和接收器的其他重要技術(shù)規(guī)格包括:

  • 瞬時帶寬:信號鏈在任意時間點可以數(shù)字化的頻譜帶寬

  • 功率處理:信號鏈在不導(dǎo)致性能下降的條件下要處理的最大信號功率

  • 通道間的相位相干性:針對新興的波束賦形系統(tǒng),確保通道間相位的可預(yù)測性可以簡化波束賦形信號的處理和校準(zhǔn)

  • 雜散性能:確保接收器和發(fā)射器不會在不期望的頻率下產(chǎn)生射頻能量,以免影響該系統(tǒng)或其他系統(tǒng)的性能

圖1. 架構(gòu)比較,(a) 高中頻(集成TRx),(b) 雙變頻超外差架構(gòu)(帶GSPS ADC),(c) 單變頻超外差架構(gòu)(帶GSPS ADC),(d) 直接變頻(帶I/Q混頻器)。

在信號鏈的設(shè)計過程中,務(wù)必記住這些和其他技術(shù)規(guī)格,以確保設(shè)計出能滿足任何給定應(yīng)用需求的高性能系統(tǒng),無論是寬帶多載波聚合集線器還是單個窄帶手持式衛(wèi)星通信終端。

2

通用架構(gòu)比較

確定高層技術(shù)規(guī)格以后即可決定采用哪種信號鏈架構(gòu)。前面列出過并且可能對架構(gòu)產(chǎn)生重大影響的一個關(guān)鍵技術(shù)規(guī)格是瞬時帶寬。該規(guī)格會影響接收器的模數(shù)轉(zhuǎn)換器(ADC)和發(fā)射器的數(shù)模轉(zhuǎn)換器(DAC)。為了實現(xiàn)高瞬時帶寬,必須以更高的速率對數(shù)據(jù)轉(zhuǎn)換器采樣,結(jié)果一般會推高整個信號鏈的功耗,但是,如果從單位功耗(W/GHz)來看,則會降低功耗。

對于帶寬不足100 Mhz的系統(tǒng),許多情況下最好采用類似于圖1a的基礎(chǔ)架構(gòu)。該架構(gòu)將標(biāo)準(zhǔn)下變頻級與集成式直接變頻收發(fā)器芯片結(jié)合起來。集成的收發(fā)器可實現(xiàn)超高的集成度,從而大幅減小尺寸和功耗。

為了達(dá)到1.5 Ghz的帶寬,可以將經(jīng)典的雙變頻超外差架構(gòu)與最先進(jìn)的ADC技術(shù)結(jié)合起來;如圖1b所示。這是一種成熟的高性能架構(gòu),集成的變頻級用于濾除無用的雜散信號。根據(jù)收到的頻段,用一個下變頻級將接收的信號轉(zhuǎn)換成中頻(IF),然后用另一個下變頻級將最終的中頻信號轉(zhuǎn)換成ADC可以數(shù)字化的低頻信號。最終中頻越低,ADC性能越高,但其代價是會增加濾波要求。一般地,受組件數(shù)量增加影響,該架構(gòu)是本文所提四個選項中尺寸最大、功耗最高的架構(gòu)。

與其類似的選項如圖1c所示,圖中是一個單次變頻級,用于將信號轉(zhuǎn)換成高中頻,再由GSPS ADC采樣。該架構(gòu)利用了ADC能數(shù)字化的更多射頻帶寬,幾乎不會導(dǎo)致性能下降。市場上最新的GSPS ADC可以對最高9 Ghz的射頻頻率直接采樣。在本選項中,中頻中心在4 Ghz和5 Ghz之間,可在信號鏈濾波要求與ADC要求之間達(dá)到最佳平衡。

最后一個選項如圖1d所示。該架構(gòu)的瞬時帶寬增幅甚至更大,但其代價是非常復(fù)雜,并且有可能導(dǎo)致性能下滑。這是一種直接變頻架構(gòu),采用一個無源I/Q混頻器,后者可以在基帶上輸出兩個相互偏移90°的中頻。然后用一個雙通道GSPS ADC對各I和Q路進(jìn)行數(shù)字化。在這種情況下,可以獲得最高達(dá)3 Ghz的瞬時帶寬。該選項的主要挑戰(zhàn)是在信號通過混頻器、低通濾波器和ADC驅(qū)動器傳播時,要在I和Q路徑之間維持正交平衡。根據(jù)具體的CNR要求,這種折衷可能是可以接受的。

以上從宏觀層面簡要介紹了這些接收器架構(gòu)的工作原理。列表并未窮盡所有情況,也可以把各種選項綜合起來使用。雖然比較未涉及發(fā)射信號鏈,但圖1中的每個選項都有一個對應(yīng)的發(fā)射信號鏈,其折衷情況也相似。

3

Ka頻段衛(wèi)星通信接收器示例

以上討論了各種架構(gòu)的優(yōu)點和不足,接下來,我們可以將這些知識運用到真實的信號鏈?zhǔn)纠?dāng)中。目前,許多衛(wèi)星通信系統(tǒng)都運行在Ka頻段,以減小天線尺寸、提高數(shù)據(jù)速率。在高吞吐量衛(wèi)星系統(tǒng)中,這一點尤其重要。以下是采用不同架構(gòu)的示例,我們將對其進(jìn)行更加詳細(xì)的比較。

對于要求100 Mhz以下瞬時帶寬的系統(tǒng),如甚小孔徑終端(VSAT),可以采用集成收發(fā)器芯片的高中頻架構(gòu)(AD9371),如圖2所示。該設(shè)計可以實現(xiàn)低噪聲指數(shù),并且由于具有高集成度,所以其設(shè)計尺寸最小?,F(xiàn)將其性能總結(jié)于表1中。

圖2. 高中頻(集成TRx),帶寬最高100 MHz。

作為衛(wèi)星通信系統(tǒng)多個用戶的集線器,這些系統(tǒng)可能要同時處理多個載波信號。這種情況下,每個接收器的帶寬或帶寬/功率就變得非常重要。圖3所示信號鏈采用一款高速ADC,即AD9208,這是最近發(fā)布的一款高采樣速率ADC,可以數(shù)字化最高1.5 Ghz的瞬時帶寬。在本例中,為了實現(xiàn)1 Ghz的瞬時帶寬,中頻被置于4.5 GHz。這里可實現(xiàn)的帶寬取決于位于ADC之前的抗混疊濾波器的濾波要求,但一般局限于奈奎斯特區(qū)的~75%(采樣速率的一半)。

圖3. 用GSPS ADC單下變頻至高中頻。

在要求最高瞬時帶寬并且可能以犧牲CNR為代價的系統(tǒng)中,可以采用圖4所示信號鏈。該信號鏈采用一個I/Q混頻器,即HMC8191HMC8191,其鏡像抑制性能為~25 dBc。在這種情況下,鏡像抑制性能受到I和Q輸出通道間幅度和相位平衡的限制。在不采用更先進(jìn)的正交誤差校正(QEC)技術(shù)的情況下,這是該信號鏈的限制因素。該信號鏈的性能總結(jié)見表1。需要注意的是,NF和IP3性能與其他選項類似,但功率/GHz指標(biāo)則為三者中最低,并且從任意時間可以利用的帶寬量來看,其尺寸也屬最佳狀態(tài)。

圖4. 用I/Q混頻器和GSPS ADC實現(xiàn)直接變頻。

這里給出的三種接收選項如下表所示,但需要注意的是,該表并未列出全部可能選項。這里的總結(jié)旨在展示各種信號鏈選項之間的差異。在任何給定系統(tǒng)中,最終的最優(yōu)信號鏈既可能是三者之一,也可能是任意選項的綜合運用。

表1. Ka頻段接收器詳情比較

高中頻(帶集成TRx) 高中頻(帶GSPS ADC) 直接變頻
收發(fā)芯片或數(shù)據(jù)轉(zhuǎn)換器 AD9371 AD9208 AD9208 (雙通道)
瞬時帶寬 100 MHz 1 GHz 2 GHz
NF (dB) 2.5 2.3 2.3
IIP3 (dBm) –19 –20 –20
最大Pin (dBm) –38 –40 –41
其他雜散(HD2, HD3, MxN) 65 dB 73 dB 45 dB
鏡像抑制(dBc) 75 80 25
濾波難度
功率(W) 2.9 4.1 6.1
功率/GHz (W/GHz) 29 4.1 3.05
封裝尺寸 (mm2) 300 510 580

另外,雖然表中只顯示了接收器端的情況,但發(fā)射器信號鏈也存在類似的折衷情況。一般地,系統(tǒng)從超外差架構(gòu)轉(zhuǎn)向直接變頻架構(gòu)后,需要在帶寬與性能之間進(jìn)行折衷。

4

數(shù)據(jù)接口

在數(shù)據(jù)被ADC或收發(fā)器數(shù)字化以后,必須通過數(shù)字接口交給系統(tǒng)處理。這里提到的所有數(shù)據(jù)轉(zhuǎn)換器都采用了高速JESD204b標(biāo)準(zhǔn),從數(shù)據(jù)轉(zhuǎn)換器接收信號,然后把信號打包組幀,再通過少量走線進(jìn)行傳輸。芯片的數(shù)據(jù)速率因系統(tǒng)要求而異,但這里提到的所有器件都有用于抽取和頻率轉(zhuǎn)換的數(shù)字功能,能夠適應(yīng)不同數(shù)據(jù)速率,以滿足不同系統(tǒng)要求。該規(guī)格在JESD204b通道上最高支持12.5 GSPS的速率,傳輸大量數(shù)據(jù)的高帶寬系統(tǒng)即充分利用了這一點。有關(guān)這些接口的詳細(xì)描述請參閱AD9208和AD9371的數(shù)據(jù)手冊。另外,FPGA的選擇必須考慮該接口。供應(yīng)商(如Xilinx?和Altera?)提供的許多FPGA目前已經(jīng)在其器件中集成該標(biāo)準(zhǔn),為與這些數(shù)據(jù)轉(zhuǎn)換器的集成提供了便利條件。

4

結(jié)論

本文詳細(xì)介紹了各種折衷情況,并就Ka頻段衛(wèi)星通信系統(tǒng)適用的信號鏈列舉了一些例子。還介紹了幾種架構(gòu)選項,包括利用集成式收發(fā)器AD9371的高中頻單次變頻選項,用GSPS ADC取代集成收發(fā)器以提高瞬時帶寬的類似架構(gòu),以及可以提高帶寬但會降低鏡像抑制性能的直接變頻架構(gòu)。介紹的信號鏈雖然可以直接使用,但建議以其為基礎(chǔ)進(jìn)行設(shè)計。根據(jù)具體的系統(tǒng)級應(yīng)用,會出現(xiàn)不同的要求,隨著設(shè)計工作的推進(jìn),信號鏈的選擇會越來越明晰。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 衛(wèi)星通信
    +關(guān)注

    關(guān)注

    12

    文章

    687

    瀏覽量

    38619
  • 誤碼率
    +關(guān)注

    關(guān)注

    1

    文章

    24

    瀏覽量

    14031
  • AD9371
    +關(guān)注

    關(guān)注

    1

    文章

    17

    瀏覽量

    10780

原文標(biāo)題:Ka頻段需要更多帶寬?這里有三個選項

文章出處:【微信號:FPGA-EETrend,微信公眾號:FPGA開發(fā)圈】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    毫米波Ka頻段衛(wèi)星通信系統(tǒng)結(jié)構(gòu)分析

    隨著全球連接需求的增長,許多衛(wèi)星通信(satcom)系統(tǒng)日益采用Ka頻段,對數(shù)據(jù)速率的要求也水漲船高。
    發(fā)表于 01-06 10:27 ?856次閱讀
    毫米波<b class='flag-5'>Ka</b><b class='flag-5'>頻段</b>在<b class='flag-5'>衛(wèi)星通信</b><b class='flag-5'>系統(tǒng)</b>結(jié)構(gòu)<b class='flag-5'>分析</b>

    Ka頻段衛(wèi)星通信地面站接收信道設(shè)計介紹

    的緊缺與擁塞,已不能滿足高速、寬帶等諸多應(yīng)用的需求。由于Ka頻段以上的衛(wèi)星通信系統(tǒng)具有可用帶寬寬,干擾少,設(shè)備體積小的特點,在衛(wèi)星通信及各種
    發(fā)表于 06-24 07:44

    衛(wèi)星通信技術(shù)近期發(fā)展介紹

    寬帶通信服務(wù),并可方便地向更高頻段擴(kuò)展;(3)快速向市場提供服務(wù):建立地面通信設(shè)施迅速,開展新的業(yè)務(wù)和應(yīng)用周期短;(4)靈活性高:衛(wèi)星通信系統(tǒng)
    發(fā)表于 07-11 07:36

    衛(wèi)星通信Ka頻段的帶寬

    隨著全球連接需求的增長,許多衛(wèi)星通信系統(tǒng)日益采用 Ka 頻段。你可知道 Ka 頻段需要多大的帶寬
    發(fā)表于 07-23 08:34

    小尺寸衛(wèi)星通信系統(tǒng)

    作者:Brad Hall和Wyatt Taylor 摘要傳統(tǒng)Ka波段地面站衛(wèi)星通信系統(tǒng)依賴于室內(nèi)到室外配置。室外單元包含天線和塊下變頻接收機(jī),接收機(jī)輸出L波段的模擬信號。該
    發(fā)表于 07-26 06:15

    Ka波段寬帶多媒體衛(wèi)星通信系統(tǒng)

    對寬帶多媒體衛(wèi)星通信系統(tǒng)的需求進(jìn)行分析的基礎(chǔ)上,對基于星載ATM交換的KA波段寬帶多媒體衛(wèi)星通信系統(tǒng)
    發(fā)表于 03-22 15:50 ?165次下載
    <b class='flag-5'>Ka</b>波段寬帶多媒體<b class='flag-5'>衛(wèi)星通信</b><b class='flag-5'>系統(tǒng)</b>

    基于OPNET的Ka頻段衛(wèi)星信道仿真建模與研究

    針對Ka頻段衛(wèi)星通信信道中電波傳播特性的研究,通過引入SAM模型和新的影響因子,包括雨滴大小、云霧及大氣吸收等,分析了降雨及多因子對信道的影響,建立了
    發(fā)表于 01-08 15:20 ?39次下載
    基于OPNET的<b class='flag-5'>Ka</b><b class='flag-5'>頻段</b><b class='flag-5'>衛(wèi)星</b>信道仿真建模與研究

    Ka頻段寬帶衛(wèi)星通信時代呼之欲來

    目前,我國自主研制的Ka頻段高通量通信衛(wèi)星受到廣泛關(guān)注。這顆衛(wèi)星投入運營后,我國將正式步入使用國產(chǎn)Ka
    發(fā)表于 11-09 11:22 ?0次下載

    從技術(shù)規(guī)格、收發(fā)器架構(gòu)、Ka頻段衛(wèi)星通信系統(tǒng)適用信號來了解Ka頻段帶寬

    今天,讓我們從一些技術(shù)規(guī)格、收發(fā)器架構(gòu)、Ka 頻段衛(wèi)星通信系統(tǒng)適用信號
    的頭像 發(fā)表于 01-17 15:36 ?1w次閱讀
    從技術(shù)規(guī)格、收發(fā)器架構(gòu)、<b class='flag-5'>Ka</b><b class='flag-5'>頻段</b><b class='flag-5'>衛(wèi)星通信</b><b class='flag-5'>系統(tǒng)</b><b class='flag-5'>適用</b>的<b class='flag-5'>信號</b><b class='flag-5'>鏈</b>來了解<b class='flag-5'>Ka</b><b class='flag-5'>頻段</b>帶寬

    美軍毫米波衛(wèi)星通信系統(tǒng)

    ,Ku以下頻率的頻譜資源越來越少,干擾越來越強(qiáng),向頻譜資源更豐富,抗干擾能力更強(qiáng)的EHF頻段發(fā)展,成為了軍事衛(wèi)星通信發(fā)展的必然方向。 二十世紀(jì)九十年代,美國率先在其全球廣播系統(tǒng)(GBS)中采用了
    發(fā)表于 01-26 14:07 ?3次下載

    EHF頻段衛(wèi)星通信特點

    中,其基礎(chǔ)技術(shù)研究得到了蓬勃發(fā)展,并逐步進(jìn)入應(yīng)用階段,英、美等國家已經(jīng)設(shè)計并建設(shè)了多個不同類型的EHF頻段衛(wèi)星通信系統(tǒng)。 美軍在其天基系統(tǒng)的規(guī)劃中,設(shè)計并完成了兩大EHF
    發(fā)表于 01-26 17:06 ?3次下載

    Ka頻段衛(wèi)星通信地面站接收單元的組成與工作原理和設(shè)計資料說明

    與擁塞,已不能滿足高速、寬帶等諸多應(yīng)用的需求。由于Ka頻段以上的衛(wèi)星通信系統(tǒng)具有可用帶寬寬,干擾少,設(shè)備體積小的特點,在衛(wèi)星通信及各種形式的
    發(fā)表于 09-17 10:45 ?1次下載
    <b class='flag-5'>Ka</b><b class='flag-5'>頻段</b><b class='flag-5'>衛(wèi)星通信</b>地面站接收單元的組成與工作原理和設(shè)計資料說明

    衛(wèi)星通信的常用頻段的詳細(xì)對比

     衛(wèi)星通信使用到的頻段涵蓋L, S, C, Ku, Ka等,而最常用的頻段是C(4~8GHz)和Ku(12~18GHz)頻段
    發(fā)表于 01-23 09:11 ?3.7w次閱讀
    <b class='flag-5'>衛(wèi)星通信</b>的常用<b class='flag-5'>頻段</b>的詳細(xì)對比

    對比衛(wèi)星通信的常用頻段(C/Ku/Ka)

    衛(wèi)星通信使用到的頻段涵蓋L, S, C, Ku, Ka等,而最常用的頻段是C(48GHz)和Ku(1218GHz)頻段,
    的頭像 發(fā)表于 06-06 14:14 ?7283次閱讀
    對比<b class='flag-5'>衛(wèi)星通信</b>的常用<b class='flag-5'>頻段</b>(C/Ku/<b class='flag-5'>Ka</b>)

    用于Ka波段衛(wèi)星通信的雙頻段圓極化無源相控陣天線

    電子發(fā)燒友網(wǎng)站提供《用于Ka波段衛(wèi)星通信的雙頻段圓極化無源相控陣天線.pdf》資料免費下載
    發(fā)表于 07-23 12:44 ?1次下載