近日,我國研究人員制備出大規(guī)模光量子芯片,并成功進行了一種重要的模擬量子計算演示。發(fā)表在最新一期美國《科學進展》雜志上的研究顯示,上海交通大學金賢敏團隊通過“飛秒激光直寫”技術(shù)制備出節(jié)點數(shù)達49×49的光量子計算芯片。金賢敏介紹,這是目前世界上最大規(guī)模的光量子計算芯片。
近日,《Science》子刊《Science Advances》以“Experimental Two-dimensional Quantum Walk on a Photonic Chip”為題發(fā)表了上海交通大學金賢敏研究團隊最新研究成果,報道了世界最大規(guī)模的三維集成光量子芯片。一個個肉眼看不見的單光子穿過透明的“玻璃片”,幾秒之后,顯示屏幕上呈現(xiàn)出單光子的二維量子行走演化結(jié)果。
這是首個真正空間二維的隨機行走量子計算,同時也是國內(nèi)首個自主實現(xiàn)的光量子計算芯片。這項研究進展對于推進模擬量子計算機研究、實現(xiàn)“量子霸權(quán)”具有重大意義。
金賢敏教授展示制備芯片中的二十組光子陣列里,每組都包含了2401根波導(Source:新華社)
一個量子計算過程完成,而其中最關(guān)鍵的就是這枚“玻璃片”。在燈光下,從某個角度看去,這枚完全透明的“玻璃片”上隱約閃現(xiàn)幾道光譜。原來一平方毫米的“玻璃片”范圍內(nèi)“雕刻”了幾千個光波導,所以就像光柵一樣呈現(xiàn)為彩色。
相比于傳統(tǒng)的計算機,這枚光量子芯片可以針對特定問題實現(xiàn)算力加速。以此為內(nèi)核,在絕對計算能力上有望超越傳統(tǒng)的經(jīng)典計算機。
5月15日,在上海交通大學,金賢敏教授(右二)在實驗室指導學生熟悉光量子芯片制備的要點。(Source:新華社)
光量子芯片的算力到底有多大
光量子芯片實現(xiàn)了量子加速,比如未來可以設(shè)定一個優(yōu)化算法,經(jīng)典計算機需要100分鐘解決的話,光量子計算機只需要10分鐘,以此類推。問題越復雜,量子加速帶來的優(yōu)越性就越明顯。當量子計算機在絕對計算能力上超越了現(xiàn)有經(jīng)典計算機的計算能力極限時, “量子霸權(quán)”就實現(xiàn)了,這是量子物理學家的孜孜不倦追求。
過去20年里,增加絕對計算能力的方式通常是制備更多光子數(shù)的量子糾纏。中國一直在這方面保持優(yōu)勢,成功將光子數(shù)從4個提高到了10個,但同時也發(fā)現(xiàn)增加光子數(shù)異常艱難。金賢敏團隊另辟蹊徑,通過增加量子演化系統(tǒng)的物理維度和復雜度來提升量子態(tài)空間尺度,開發(fā)了全新量子資源,對于未來模擬量子計算機的研發(fā)具有重要意義。
“最大規(guī)?!笔谴舜谓鹳t敏團隊發(fā)布的光量子芯片的一個關(guān)鍵詞。在這枚光量子芯片里節(jié)點數(shù)多達49×49個,也就是2401個節(jié)點的超大演化空間,這樣即使是單光子注入,也能實現(xiàn)數(shù)以千記的量子行走路徑,實驗中量子達到至少一百多個行走步徑,突破了量子行走實驗紀錄。正是這種目前世界最大規(guī)模的光量子計算芯片,使得真正空間二維自由演化的量子行走得以在實驗中首次實現(xiàn),并將促進未來更多以量子行走為內(nèi)核的量子算法的實現(xiàn)。
同時在演化過程中,光量子在波導之間的耦合強弱也可通過設(shè)計波導間距來精確調(diào)控。甚至精準波導彎曲、定量引入損耗及等調(diào)控技術(shù)也在穩(wěn)步發(fā)展中。不斷純熟的集成化波導芯片技術(shù)使得量子行走向?qū)嶋H模擬量子計算應(yīng)用大步靠近。
通過飛秒激光直寫技術(shù),研究人員可以像3D打印一樣制備可集成大規(guī)模光子線路的光量子芯片。金賢敏團隊經(jīng)過數(shù)年的努力,從系統(tǒng)設(shè)計到參數(shù)摸索優(yōu)化,不斷積累經(jīng)驗,終于在光量子芯片的規(guī)模上實現(xiàn)了超越,但實用征程仍然漫長。
金賢敏團隊展示通過“飛秒激光直寫”技術(shù)制備光量子計算芯片的過程。(Source:新華社)
在特定的問題上超越經(jīng)典計算機
“在研究者的實驗室里,從單光子的產(chǎn)生到芯片里量子態(tài)的演化,再到單光子的探測,整個過程和系統(tǒng)形成了一臺模擬量子計算機?!苯鹳t敏說。
金賢敏教授講解“飛秒激光直寫”光量子芯片平臺的編程操作。(Source:新華社)
所謂“模擬量子計算機”,就是指專用量子計算機。相比于基于量子門的通用量子計算機(即數(shù)字量子計算機),它可通過構(gòu)建量子物理系統(tǒng)直接實現(xiàn),而不需要依賴復雜的量子糾錯,因此更加可行。作為模擬量子計算的一種重要算法內(nèi)核,二維空間中的量子行走模型,能夠?qū)⑻囟ㄓ嬎闳蝿?wù)對應(yīng)到量子演化空間中的相互耦合系數(shù)矩陣中,當量子演化體系能夠制備得足夠大并且能靈活設(shè)計結(jié)構(gòu)時,可以用來實現(xiàn)工程、金融、生物醫(yī)藥等各領(lǐng)域中的各種搜索、優(yōu)化問題,展現(xiàn)出遠遠優(yōu)于經(jīng)典計算機的表現(xiàn),具有廣泛的應(yīng)用前景。
金賢敏對記者介紹說,基于光量子芯片中的大規(guī)模量子演化系統(tǒng),在量子隨機行走的問題上超過了經(jīng)典隨機行走的表現(xiàn)。但是要將這種超越付諸于實際應(yīng)用,還是一個艱難和漫長的過程。
“我們可以期待一些原理性的應(yīng)用,比如將網(wǎng)絡(luò)節(jié)點排序、搜索問題、優(yōu)化問題等映射到二維空間隨機行走的模型,目前我們正在深度挖掘?!苯鹳t敏說,但可以肯定的是,相比于其他量子計算概念,光量子芯片由于其高集成度和高穩(wěn)定性,更易構(gòu)建足夠復雜的專用量子計算機,用于解決一些特定實際問題。
模擬量子計算的實力前景
近年來,關(guān)于通用量子計算機的新聞屢見于報端,IBM、谷歌、英特爾等公司爭相宣告實現(xiàn)了更高的量子比特數(shù)紀錄。但是業(yè)界共識是即使做出幾十甚至更多量子比特數(shù),如果沒有做到全互連、精度不夠并且無法進行糾錯,通用量子計算仍然無法實現(xiàn)。與之相比,模擬量子計算可以直接構(gòu)建量子系統(tǒng),不需要像通用量子計算那樣依賴復雜量子糾錯。一旦能夠制備和控制的量子物理系統(tǒng)達到全新尺度,將可直接用于探索新物理和在特定問題上推進遠超經(jīng)典計算機的絕對計算能力。
模擬量子計算(analog quantum computing),相對于通用量子計算,有更平易近人的物理實現(xiàn)方式,而且對于玻色采樣、搜索、哈密頓量學習、化學模擬等問題上有明顯的天然對應(yīng)方式和加速優(yōu)勢,因此是目前量子信息發(fā)展的另一個不可或缺、至關(guān)重要的領(lǐng)域。谷歌公司于2017年推出的量子軟件OpenFermion便是專攻模擬量子計算。
作為模擬量子計算的一個強有力的工具,二維空間中的量子行走,能夠?qū)⑻囟ㄓ嬎闳蝿?wù)對應(yīng)到量子演化空間中的相互耦合系數(shù)矩陣中,當量子演化體系能夠制備得足夠大并且能靈活設(shè)計結(jié)構(gòu)時,可以用來實現(xiàn)工程、金融、生物醫(yī)藥等各領(lǐng)域中的各種搜索、優(yōu)化問題,展現(xiàn)出遠優(yōu)于經(jīng)典計算機的表現(xiàn),具有廣泛的應(yīng)用前景。
但是,想要將量子行走真正運用于模擬量子計算來展現(xiàn)量子算法優(yōu)越性,務(wù)必滿足兩點:足夠多的行走路徑,及可根據(jù)算法需求自由設(shè)計的演化空間。以往的量子行走實驗受限于所能制備的物理體系的尺寸限制,只能做出幾小步演化的原理性演示,且從來不能在真正的空間二維體系中自由演化,遠不足以用于模擬量子計算實驗。
金賢敏團隊通過制備PPKTP高亮度單光子源及發(fā)展高分辨率ICCD單光子成像技術(shù),觀察了光量子的二維行走模式。實驗驗證量子行走不論在一維還是二維演化空間中,都具有區(qū)別于經(jīng)典隨機行走的彈道式傳輸特性(ballistic transport)。這種加速傳輸正是支持量子行走能夠在許多算法中超越經(jīng)典計算機的基礎(chǔ)。理論曾指出瞬態(tài)網(wǎng)絡(luò)特性(transient network)只在大于一維的量子行走中才實現(xiàn),而以往準二維量子行走實驗由于受限的量子演化空間,無法觀測網(wǎng)絡(luò)傳播特征。該研究首次在實驗中觀測了瞬態(tài)網(wǎng)絡(luò)特性,進一步驗證了所實現(xiàn)的量子行走的二維特征。
圖:單光子的二維量子行走演化結(jié)果。從左至右:量子行走演化時間逐漸增大
超大規(guī)模光量子計算芯片來之不易
從全球范圍看,目前光量子芯片的研發(fā)仍然處于早期階段,需要在損耗、精度和可調(diào)控能力等各項指標上,在材料、工藝和混合芯片構(gòu)架上,以及在與量子計算、量子通信和量子精密測量系統(tǒng)融合上開展大量研究,扎實推進,構(gòu)建尺度和復雜度上都達到全新水平的光量子系統(tǒng),實質(zhì)性地推動新物理的探索和量子信息技術(shù)的實用化。
這些超大規(guī)模光量子計算芯片,得來實屬不易。早在2014年,金賢敏放棄獲得英國永居機會,從牛津大學毅然回到上海交通大學從零開始組建量子信息實驗室時,就把目標放準了光子芯片的研究方向,從搭建實驗室飛秒激光直寫平臺到不斷摸索直寫參數(shù),前后花了三年時間,才對每個參數(shù)對于波導各項性能的影響以及如何寫出需求中的波導性能游刃有余。同時花費兩年半時間搭建高亮度單光子源和發(fā)展高精度的單光子成像技術(shù),這才使得一個個光子在芯片里二維空間量子行走的演化模式首次觀測出來。
金賢敏教授在觀察制備的芯片。(Source:新華社)
其實,芯片化集成化已經(jīng)成為量子信息技術(shù)真正邁向?qū)嵱没难芯繜狳c和戰(zhàn)略性方向,在歐洲尤其是英國,已經(jīng)提前布局并連續(xù)獲得突破。英國布里斯托大學Jeremy O‘Brien團隊和牛津大學Ian Walmsley團隊是國際上最早開展集成化量子信息技術(shù)研究。2014年英國財政部宣布5年資助2.7億英鎊支持四個研究團隊開展量子芯片的技術(shù)研究,其中Ian Walmsley領(lǐng)銜的基于光量子集成芯片構(gòu)架網(wǎng)絡(luò)化量子信息技術(shù)[Networked Quantum Information Technology (NQIT)])獲得支持。此外,歐洲為了在量子信息技術(shù)集成化研究領(lǐng)域上取得領(lǐng)先地位,歐盟支持把飛秒激光直寫與量子信息應(yīng)用相結(jié)合的科學基礎(chǔ)研究和技術(shù)基礎(chǔ)研究,按照側(cè)重不同設(shè)立多個重大研究項目,包括QuChip、3DQUEST和PICQUE等,對歐洲多個研究群體進行重點資助。
目前國際上基于光子芯片做量子計算研究有三個主要團隊,一是以牛津大學、布里斯托大學(Bristol University)為主的英國量子中心Quantum Hub,二是意大利米蘭理工大學團隊,三是德國光學名校耶拿大學與以色列理工大學的德國以色列合作團隊。雖然這些團隊形成時間更早,經(jīng)過努力,上海交大的金賢敏團隊仍獲得以下優(yōu)勢:
首先英國團隊和意大利團隊制備光波導芯片的尺寸非常有限,通常為一維陣列且波導數(shù)目不超過50,德國以色列團隊能制備二維陣列,然而波導數(shù)目也不超過100,而金賢敏使用飛秒激光直寫技術(shù),通過幾年的參數(shù)摸索經(jīng)驗積累,可以制備每個陣列的波導數(shù)目可以高達2500且性能穩(wěn)定的超大規(guī)模二維陣列。2017在牛津大學交流報告時,對方看到金賢敏團隊所展示的超大波導陣列上的量子光學實驗圖片,非常驚嘆,給出很高的評價。
金賢敏團隊另一優(yōu)勢在于制備芯片的高效性。英國團隊和意大利團隊使用芯片需要多方協(xié)調(diào):英國芯片由南安普頓大學加工,而送到牛津大學等其他大學使用,意大利芯片制備方和使用方分別在羅馬和米蘭,往往從提交任務(wù)到收到芯片需要數(shù)月。而金賢敏團隊自主制備光子芯片,不到一天的時間內(nèi)就能制備總計上萬根波導的許多組陣列,科研上可以很快得到反饋。
第三個優(yōu)勢在于研究量子信息的專業(yè)性。德國以色列團隊雖然早在2008年就開始制備光學芯片,但將其用于光學和傳統(tǒng)物理的研究,團隊沒有量子研究的基礎(chǔ)。金賢敏在創(chuàng)立團隊之前已有十幾年量子信息的研究經(jīng)歷,從初建團隊就是專注于光學集成芯片在量子信息領(lǐng)域的應(yīng)用,成為國際少有的能夠同時自主制備二維光子芯片和開展量子信息研究的獨立型團隊。
-
芯片
+關(guān)注
關(guān)注
452文章
50206瀏覽量
420891 -
量子計算
+關(guān)注
關(guān)注
4文章
1071瀏覽量
34863
原文標題:恭喜,上海交大宣布!世界最大規(guī)模芯片!
文章出處:【微信號:icunion,微信公眾號:半導體行業(yè)聯(lián)盟】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論