0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

關(guān)于一種小型、高效反輻射導(dǎo)引頭接收方案的設(shè)計

電子設(shè)計 ? 來源:網(wǎng)絡(luò)整理 ? 作者:工程師吳畏 ? 2018-06-12 16:21 ? 次閱讀

0 引言

雷達(dá)導(dǎo)引頭是反輻射導(dǎo)彈(ARM)的關(guān)鍵部件,被譽為ARM的“眼睛”,主要功能是完成對輻射源的分選、截獲和跟蹤,其技術(shù)性能將直接影響反輻射導(dǎo)彈的作戰(zhàn)性能[1]。隨著雷達(dá)技術(shù)的提高,超寬頻帶導(dǎo)引頭進(jìn)一步擴大頻率覆蓋范圍,使反輻射導(dǎo)彈幾乎能覆蓋所有頻段的各種輻射源[2]。傳統(tǒng)導(dǎo)引頭在分選識別多頻帶輻射源時,一般流程是AD采樣處理后直接傳送超寬帶頻譜至數(shù)字信號處理部分,再對寬帶數(shù)據(jù)進(jìn)行抽取和濾波。隨著導(dǎo)引頭頻率覆蓋范圍的進(jìn)一步擴大,傳統(tǒng)處理流程不僅會造成效費比總體偏低[3],而且傳統(tǒng)并行LVDS傳輸接口存在大量數(shù)據(jù)連線復(fù)雜[4]等難題,難以迎合現(xiàn)代反輻射導(dǎo)引頭寬頻帶、小型化的發(fā)展趨勢。

為了提高導(dǎo)引頭總體效費比,簡化其物理互聯(lián)以趨向小型化,提出了一種基于DDC模塊和JESD204B接口的導(dǎo)引頭接收電路設(shè)計方案。一方面,通過ADC內(nèi)置的DDC模塊對數(shù)字化后的寬帶數(shù)據(jù)進(jìn)行篩選、抽取和濾波之后再傳送給信號處理部分,提高了導(dǎo)引頭對多種頻帶雷達(dá)信號的處理效費比;另一方面,采用JESD204B高速串行接口作為數(shù)字信號傳輸接口,在保證單通道數(shù)據(jù)傳輸速度的同時,極大地簡化了數(shù)據(jù)連線復(fù)雜度,為系統(tǒng)小型化設(shè)計奠定了基礎(chǔ)。

1 方案設(shè)計

典型被動雷達(dá)導(dǎo)引頭由天線、接收機、信號分選與選擇系統(tǒng)、指令控制放大器等組成[5]。圖1是16通道導(dǎo)引頭接收系統(tǒng)框圖。超寬頻帶接收天線接收超寬頻帶雷達(dá)輻射信號,傳輸至射頻信號調(diào)理電路,射頻信號調(diào)理電路的作用是防止接收輻射信號中噪聲、雜波影響模數(shù)轉(zhuǎn)換器的轉(zhuǎn)換精度。模數(shù)轉(zhuǎn)換器將輸入模擬信號進(jìn)行采樣轉(zhuǎn)換成數(shù)字信號,再由模數(shù)轉(zhuǎn)換器所帶的DDC模塊進(jìn)行抽取和濾波,最后通過JESD204B高速接口送給數(shù)字信號處理電路,通常是帶JESD204B接口的高性能FPGA。該系統(tǒng)的導(dǎo)引頭接收電路由16通道的射頻信號調(diào)理電路,8片帶DDC模塊和JESD204B接口的雙通道模數(shù)轉(zhuǎn)換器以及8片帶JESD204B接口的FPGA組成。

關(guān)于一種小型、高效反輻射導(dǎo)引頭接收方案的設(shè)計

1.1 高速模數(shù)轉(zhuǎn)換芯片ADC32RF45

設(shè)計的反輻射導(dǎo)引頭接收電路選擇采用美國TI公司的雙通道、14位3.0GSPS模數(shù)轉(zhuǎn)換芯片ADC32RF45,支持輸入頻率高達(dá)4 GHz及以上的射頻(RF)采樣,并且模擬單通道能夠同時處理并輸出帶寬為75 MHz~600 MHz范圍內(nèi)的雙基帶信號。如圖2所示,其內(nèi)部集成了模擬信號緩沖模塊、高速14位ADC、自動增益控制模塊、數(shù)字下變頻模塊和JESD204B接口模塊。

關(guān)于一種小型、高效反輻射導(dǎo)引頭接收方案的設(shè)計

1.2 片上數(shù)字下變頻器

片上數(shù)字下變頻器由混頻器、數(shù)控振蕩器和抽取濾波器3部分組成,其結(jié)構(gòu)框圖如圖3所示,主要功能是從采樣轉(zhuǎn)換輸出的高速寬帶信號中提取到基帶信號,同時對基帶信號進(jìn)行抽取和濾波,降低信號速率,以滿足后續(xù)模塊的實時處理[6]。本文中所采用ADC的每條模擬通道后面都有一組數(shù)字下變頻器,可以在單通道模擬載波輸入中實現(xiàn)雙基帶信號提取與處理。

關(guān)于一種小型、高效反輻射導(dǎo)引頭接收方案的設(shè)計

1.3 JESD204B接口

ADC32RF45的數(shù)字輸出接口為JESD204B子類1接口,模擬單通道最高同時支持四路鏈路,每一條傳輸鏈路帶寬最高為12.5 Gbps。ADC32RF45芯片中的JESD204B接口的單模擬通道輸出鏈路數(shù)取決于前端采樣率和總抽取階數(shù)的配置,可以被配置為1線、2線和4線模式。

2 系統(tǒng)設(shè)計與應(yīng)用

本文中反輻射導(dǎo)引頭系統(tǒng)以TI公司模數(shù)轉(zhuǎn)換芯片ADC32RF45作為導(dǎo)引頭接收電路核心,采用賽靈思K7系列FPGA作為后端數(shù)字信號處理單元,通過軟件仿真和實驗測試驗證了基于數(shù)字下變頻處理和JESD204B接口的模擬單通道接收方案的可行性與優(yōu)點。

2.1 寬帶接收電路設(shè)計

為了初步驗證方案的可行性,設(shè)計了基于ADC32RF45接收電路,具體實現(xiàn)方式為將ADC32RF45開發(fā)模塊與單片F(xiàn)PGA開發(fā)套件通過專用連接插件相連。該接收電路采用FPGA作為數(shù)字信號處理中心,利用其內(nèi)部高速收發(fā)器GTX實現(xiàn)了JESD204B接口,使得FPGA完成了對模擬前端ADC32RF45單路輸出數(shù)據(jù)的接收。

2.2 數(shù)字下變頻器應(yīng)用分析

在高速采集系統(tǒng)中,高采樣率和輸入帶寬的ADC為后端數(shù)字信號處理單元提供了較寬的可見頻譜[7]。在以往的數(shù)字下變頻結(jié)構(gòu)設(shè)計中,很少在考慮多級濾波器設(shè)計的同時,引入多帶寬設(shè)計的思路來擴展數(shù)字下變頻器的適用范圍[8]。針對反輻射導(dǎo)引頭工作特點,需要實時檢測多個窄帶數(shù)據(jù)以實現(xiàn)對多種型號雷達(dá)的制導(dǎo)攻擊,本文采用片上數(shù)字下變頻器實現(xiàn)了對多帶寬基帶信號的篩選、抽取與濾波。

ADC數(shù)字化后的多頻帶復(fù)合射頻信號對應(yīng)兩條下變頻鏈路,分別乘以兩個零相位、頻率為目標(biāo)頻帶中心頻率的正弦信號,將感興趣頻帶中心變頻到零赫茲。在將感興趣帶寬信號降頻之后,再通過帶有抽樣功能的低通濾波器濾去不需要的頻率成分,保留感興趣且對后續(xù)信號處理有用的頻段信息,使得后端資源利用率得到優(yōu)化。

2.3 JESD204B接口應(yīng)用分析

當(dāng)前并行輸入/輸出技術(shù)存在帶寬限制,例如CMOS或LVDS,迫使數(shù)據(jù)轉(zhuǎn)換器的管腳數(shù)目越來越多[9]。當(dāng)導(dǎo)引頭接收電路實現(xiàn)多頻帶采樣處理功能,應(yīng)用并行LVDS接口不僅難以負(fù)荷高達(dá)吉赫茲的瞬時帶寬,而且使得模擬前端與后端FPGA之間連線布局復(fù)雜。為了提高數(shù)據(jù)傳輸速率,降低導(dǎo)引頭內(nèi)部電路復(fù)雜度,使導(dǎo)引頭整體趨向小型化,本設(shè)計采用JESD204B協(xié)議。JESD204協(xié)議于2006年首次提出,僅支持單一通道的數(shù)據(jù)傳輸,傳輸速度為3.125 Gb/s,其升級版JESD204A 協(xié)議增加了對多路串行通道傳輸?shù)闹С帜芰?,?a href="http://ttokpm.com/article/bbs/" target="_blank">最新版JESD204B增加了對確定延時的條款并將傳輸速度進(jìn)一步提高到了12.5 Gb/s[10]。鏈路建立及傳輸具體流程圖如圖4所示。

關(guān)于一種小型、高效反輻射導(dǎo)引頭接收方案的設(shè)計

本設(shè)計以賽靈思公司免費的基于GTX的JESD204 PHY IP核作為設(shè)計基礎(chǔ),使用VIVADO軟件設(shè)計上層硬件邏輯。JESD204B鏈路間同步分為三個階段,字同步、幀同步和數(shù)據(jù)傳輸。在字同步階段,F(xiàn)PGA使用GTX中的時鐘數(shù)據(jù)恢復(fù)技術(shù)從ADC輸出數(shù)據(jù)流中定位控制字。在幀同步階段,為了對齊所有鏈路,作為接收方,F(xiàn)PGA需要檢驗鏈路參數(shù)和通過系統(tǒng)參考信號建立幀數(shù)據(jù)與多幀數(shù)據(jù)邊界。在數(shù)據(jù)傳輸階段,本設(shè)計通過FPGA內(nèi)部邏輯設(shè)計實現(xiàn)了數(shù)據(jù)流中控制字符的替換,完成原始數(shù)據(jù)還原。

3 測試結(jié)果與分析

3.1 JESD204B接口測試

利用Xilinx提供的Integrated Bit Error Ratio(IBERT)對高速串行通信測試,不僅使測試更加方便快捷,更有利于快速檢測、改善FPGA板卡上高速吉比特收發(fā)器的通信質(zhì)量[11]。通過VIVADO軟件內(nèi)部誤碼分析眼圖,“眼”睜開狀態(tài)明顯,誤碼率量級為e-9,屬于正常范圍,證明鏈路信號完整性良好。

同理,Xilinx公司的FPGA芯片具備內(nèi)部邏輯分析工具,通過JATG接口實現(xiàn)與FPGA芯片之間數(shù)據(jù)的連接[12],通過配置使ADC進(jìn)入JESD204B鏈路自測試模式,即在不采樣的情況下ADC輸出測試信號波形。通過VIVADO軟件內(nèi)部邏輯分析工具抓取經(jīng)過單鏈路JESD204B接口接收的測試信號如圖5所示,正弦波形顯示良好,由此可證明單鏈路JESD204B接口可以正確解析信號。

關(guān)于一種小型、高效反輻射導(dǎo)引頭接收方案的設(shè)計

3.2 基帶篩選仿真

在默認(rèn)采樣率fs為3 GSPS的情況下,通過MATLAB軟件驗證利用兩個數(shù)字下變頻器從雙頻帶載波信號提取兩個基波信號方案的可行性。采用頻分復(fù)用調(diào)制,利用信號發(fā)生器AMU200將帶寬為50 MHz和140 MHz的基帶信號分別調(diào)制到中心頻率分別為400 MHz和1.2 GHz的正弦載波,模擬出經(jīng)過采樣轉(zhuǎn)換后的雙頻帶載波信號。仿照ADC內(nèi)部下變頻模塊組成建立模型,設(shè)置本振頻率NCO2為400 MHz和NCO1為1.2 GHz,并且每一個抽取濾波器的抽取系數(shù)為4,因此每一個數(shù)字下變頻器的總抽取系數(shù)為8,經(jīng)過數(shù)字下變頻后輸出基帶信號的截止頻率為0.0625×fs。將輸入雙基帶載波信號和輸出的兩個基帶信號分別進(jìn)行快速傅里葉變換,得到如圖6、圖7和圖8所示頻譜。

關(guān)于一種小型、高效反輻射導(dǎo)引頭接收方案的設(shè)計

關(guān)于一種小型、高效反輻射導(dǎo)引頭接收方案的設(shè)計

由仿真圖分析可知,仿照ADC內(nèi)部單通道數(shù)字下變頻器所建立的數(shù)字下變頻模型可以實現(xiàn)雙基帶信號提取濾波功能,證明設(shè)計方案具有可行性。

4 結(jié)論

本文設(shè)計了基于數(shù)字下變頻和JESD204B接口的導(dǎo)引頭接收電路,介紹分析了數(shù)字下變頻器和JESD204B接口在反輻射導(dǎo)引頭領(lǐng)域的應(yīng)用優(yōu)勢。針對反輻射導(dǎo)引頭研制領(lǐng)域?qū)掝l帶、多載波和小型化的發(fā)展趨勢,靈活應(yīng)用新型高速ADC中數(shù)字下變頻器,寬帶導(dǎo)引頭接收可以輸入帶寬高達(dá)4 GHz,在導(dǎo)引頭前端實現(xiàn)了頻帶篩選,能夠完成75 MHz~600 MHz帶寬范圍內(nèi)多個不同的基帶信號的數(shù)字下變頻,與傳統(tǒng)方案相比,提高了后端信號處理效率。利用基于高速收發(fā)器GTX的JESD204 Phy IP實現(xiàn)了單通道JESD204B接收接口,與并行傳輸接口相比,簡化了板級布局連線,同時保證了數(shù)據(jù)高速傳輸。經(jīng)過軟件功能仿真以及硬件實際測試,初步驗證了方案設(shè)計的可行性,為研制寬頻帶、小型化反輻射導(dǎo)引頭奠定了一定技術(shù)基礎(chǔ)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • ARM
    ARM
    +關(guān)注

    關(guān)注

    134

    文章

    9027

    瀏覽量

    366481
  • 模數(shù)轉(zhuǎn)換

    關(guān)注

    1

    文章

    213

    瀏覽量

    36816
  • DDC
    DDC
    +關(guān)注

    關(guān)注

    2

    文章

    87

    瀏覽量

    37060
  • 雷達(dá)導(dǎo)引頭

    關(guān)注

    1

    文章

    5

    瀏覽量

    6967
收藏 人收藏

    評論

    相關(guān)推薦

    怎么利用FPGA+DSP導(dǎo)引頭信號處理FPGA?

    隨著同防工業(yè)對精確制導(dǎo)武器要求的不斷提高,武器系統(tǒng)總體設(shè)計方案的日趨復(fù)雜,以及電子元器件水平的飛速發(fā)展。導(dǎo)引頭信號處理器的功能越來越復(fù)雜,硬件規(guī)模越來越大.處理速度也越來越高.而且產(chǎn)品的更新速度加快
    發(fā)表于 08-19 06:38

    FPGA+DSP導(dǎo)引頭信號處理中的FPGA技術(shù)該怎么實現(xiàn)?

    .FPGA+DSP的導(dǎo)引頭信號處理結(jié)構(gòu)成為當(dāng)前以及未來段時間的主流。FPGA和DSP處理器具有截然不同的架構(gòu),在一種器件上非常有效的算法.在另一種器件上可能效率會非常低。如果目標(biāo)要求
    發(fā)表于 08-30 06:31

    如何利用FPGA+DSP導(dǎo)引頭信號處理?

    隨著同防工業(yè)對精確制導(dǎo)武器要求的不斷提高,武器系統(tǒng)總體設(shè)計方案的日趨復(fù)雜,以及電子元器件水平的飛速發(fā)展。導(dǎo)引頭信號處理器的功能越來越復(fù)雜,硬件規(guī)模越來越大.處理速度也越來越高.而且產(chǎn)品的更新速度加快
    發(fā)表于 11-06 08:34

    一種通用PD導(dǎo)引頭目標(biāo)模擬器的設(shè)計

    敘述了基于某型PD導(dǎo)引頭的通用目標(biāo)模擬器的設(shè)計思路和具體實現(xiàn)方案,著重介紹了系統(tǒng)中所應(yīng)用的寬帶接收,視頻回波的單邊帶調(diào)制和高精度功率衰減技術(shù)
    發(fā)表于 10-11 15:31 ?47次下載
    <b class='flag-5'>一種</b>通用PD<b class='flag-5'>導(dǎo)引頭</b>目標(biāo)模擬器的設(shè)計

    相控陣?yán)走_(dá)導(dǎo)引頭捷聯(lián)去耦數(shù)字平臺設(shè)計

    相控陣?yán)走_(dá)導(dǎo)引頭是未來導(dǎo)引頭發(fā)展的個重要領(lǐng)域,為了消除彈體擾動對導(dǎo)引頭測量誤差的影響,實現(xiàn)相控陣?yán)走_(dá)導(dǎo)引頭的捷聯(lián)去耦,設(shè)計了
    發(fā)表于 07-30 10:39 ?36次下載
    相控陣?yán)走_(dá)<b class='flag-5'>導(dǎo)引頭</b>捷聯(lián)去耦數(shù)字平臺設(shè)計

    脈沖多普勒雷達(dá)導(dǎo)引頭實時雜波模型

    脈沖多普勒雷達(dá)導(dǎo)引頭實時雜波模型,下來看看
    發(fā)表于 12-24 23:22 ?22次下載

    相控陣?yán)走_(dá)導(dǎo)引頭的介紹及其數(shù)字平臺設(shè)計

    相控陣?yán)走_(dá)導(dǎo)引頭是未來導(dǎo)引頭發(fā)展的個重要領(lǐng)域,為了消除彈體擾動對導(dǎo)引頭測量誤差的影響,實現(xiàn)相控陣?yán)走_(dá)導(dǎo)引頭的捷聯(lián)去耦,設(shè)計了
    發(fā)表于 11-16 17:56 ?10次下載
    相控陣?yán)走_(dá)<b class='flag-5'>導(dǎo)引頭</b>的介紹及其數(shù)字平臺設(shè)計

    如何進(jìn)行相控陣?yán)走_(dá)導(dǎo)引頭收發(fā)系統(tǒng)的設(shè)計

    相控陣?yán)走_(dá)導(dǎo)引頭是未來雷達(dá)導(dǎo)引頭的發(fā)展方向, 而小型化收發(fā)系統(tǒng)是相控陣?yán)走_(dá)導(dǎo)引頭的關(guān)鍵技術(shù)。本文討論了相控陣?yán)走_(dá)導(dǎo)引頭的系統(tǒng)組成和工作原理,
    發(fā)表于 03-21 16:19 ?20次下載
    如何進(jìn)行相控陣?yán)走_(dá)<b class='flag-5'>導(dǎo)引頭</b>收發(fā)系統(tǒng)的設(shè)計

    微帶天線的功率容量能否滿足相控陣導(dǎo)引頭的要求?

    然而,微帶天線的個缺點是功率容量較低,為了具有更遠(yuǎn)的探測距離,相控陣導(dǎo)引頭需要有較大的發(fā)射功率,若要將微帶天線陣應(yīng)用于導(dǎo)引頭,必須考慮微帶天線陣所能承受的最大發(fā)射功率。文中以微帶天線功率容量的計算方法為研究重點,論證微帶天線陣
    的頭像 發(fā)表于 04-09 11:44 ?8694次閱讀

    解析多種雷達(dá)導(dǎo)引頭和有源相控陣?yán)走_(dá)

    今天給大家?guī)淼氖恰抖喾N類型的“導(dǎo)引頭”和雷達(dá)系統(tǒng)》的中文譯版. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 編輯:jq
    的頭像 發(fā)表于 03-30 11:45 ?6281次閱讀
    解析多種雷達(dá)<b class='flag-5'>導(dǎo)引頭</b>和有源相控陣?yán)走_(dá)

    雷達(dá)導(dǎo)引頭的交流電源畸變測試方法綜述

    雷達(dá)導(dǎo)引頭的交流電源畸變測試方法綜述
    發(fā)表于 07-05 14:12 ?16次下載

    《捷聯(lián)導(dǎo)引頭穩(wěn)定與跟蹤技術(shù)》pdf

    《捷聯(lián)導(dǎo)引頭穩(wěn)定與跟蹤技術(shù)》pdf
    發(fā)表于 01-11 09:29 ?0次下載

    自研國產(chǎn)化圖像處理板在導(dǎo)引頭的應(yīng)用

    導(dǎo)引頭是安裝在制導(dǎo)武器頭部,測量目標(biāo)相對于制導(dǎo)武器的運動參數(shù)并產(chǎn)生制導(dǎo)信息的裝置。導(dǎo)引頭通過接收目標(biāo)輻射或反射的能量,測得制導(dǎo)武器飛向目標(biāo)的相對位置信息并形成制導(dǎo)指令,是制導(dǎo)武器上用于
    的頭像 發(fā)表于 12-02 14:38 ?1294次閱讀
    自研國產(chǎn)化圖像處理板在<b class='flag-5'>導(dǎo)引頭</b>的應(yīng)用

    可編程導(dǎo)引頭模擬器怎么用

    的威脅,再者,它們是靜態(tài)的,不能根據(jù)距離與軌道的變化生成動態(tài)實時信號,這樣的系統(tǒng)僅僅能夠模擬一種類型的威脅,有時只能生成發(fā)射脈沖,對于實時威脅或導(dǎo)引頭接收與處理鏈路來說,無法準(zhǔn)確評估對抗措施的實際效果。
    的頭像 發(fā)表于 07-17 10:41 ?714次閱讀
    可編程<b class='flag-5'>導(dǎo)引頭</b>模擬器怎么用

    W波段雷達(dá)導(dǎo)引頭的基本實現(xiàn)方案、關(guān)鍵技術(shù)解決途徑

    電子發(fā)燒友網(wǎng)站提供《W波段雷達(dá)導(dǎo)引頭的基本實現(xiàn)方案、關(guān)鍵技術(shù)解決途徑.pdf》資料免費下載
    發(fā)表于 10-23 09:14 ?1次下載
    W波段雷達(dá)<b class='flag-5'>導(dǎo)引頭</b>的基本實現(xiàn)<b class='flag-5'>方案</b>、關(guān)鍵技術(shù)解決途徑