0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學習在自然語言處理方面的研究進展

Dbwd_Imgtec ? 來源:互聯(lián)網(wǎng) ? 作者:佚名 ? 2018-07-19 09:20 ? 次閱讀

要是關(guān)注深度學習在自然語言處理方面的研究進展,我相信你一定聽說過Attention Model(后文有時會簡稱AM模型)這個詞。AM模型應(yīng)該說是過去一年來NLP領(lǐng)域中的重要進展之一,在很多場景被證明有效。聽起來AM很高大上,其實它的基本思想是相當直觀簡潔的。

Encoder-Decoder框架

本文只談?wù)勎谋咎幚眍I(lǐng)域的AM模型,在圖片處理或者(圖片-圖片標題)生成等任務(wù)中也有很多場景會應(yīng)用AM模型,但是我們此處只談文本領(lǐng)域的AM模型,其實圖片領(lǐng)域AM的機制也是相同的。

要提文本處理領(lǐng)域的AM模型,就不得不先談Encoder-Decoder框架,因為目前絕大多數(shù)文獻中出現(xiàn)的AM模型是附著在Encoder-Decoder框架下的,當然,其實AM模型可以看作一種通用的思想,本身并不依賴于Encoder-Decoder模型,這點需要注意。

Encoder-Decoder框架可以看作是一種文本處理領(lǐng)域的研究模式,應(yīng)用場景異常廣泛,本身就值得非常細致地談一下,但是因為本文的注意力焦點在AM模型,所以此處我們就只談一些不得不談的內(nèi)容,詳細的Encoder-Decoder模型以后考慮專文介紹。

下圖是文本處理領(lǐng)域里常用的Encoder-Decoder框架最抽象的一種表示:

圖1:抽象的Encoder-Decoder框架

Encoder-Decoder框架可以這么直觀地去理解:可以把它看作適合處理由一個句子(或篇章)生成另外一個句子(或篇章)的通用處理模型。對于句子對,我們的目標是給定輸入句子X,期待通過Encoder-Decoder框架來生成目標句子Y。X和Y可以是同一種語言,也可以是兩種不同的語言。而X和Y分別由各自的單詞序列構(gòu)成:

Encoder顧名思義就是對輸入句子X進行編碼,將輸入句子通過非線性變換轉(zhuǎn)化為中間語義表示C:

對于解碼器Decoder來說,其任務(wù)是根據(jù)句子X的中間語義表示C和之前已經(jīng)生成的歷史信息y1,y2….yi-1來生成i時刻要生成的單詞yi

每個yi都依次這么產(chǎn)生,那么看起來就是整個系統(tǒng)根據(jù)輸入句子X生成了目標句子Y。

Encoder-Decoder是個非常通用的計算框架,至于Encoder和Decoder具體使用什么模型都是由研究者自己定的,常見的比如CNN/RNN/BiRNN/GRU/LSTM/Deep LSTM等,這里的變化組合非常多,而很可能一種新的組合就能攢篇論文,所以有時候科研里的創(chuàng)新就是這么簡單。比如我用CNN作為Encoder,用RNN作為Decoder,你用BiRNN做為Encoder,用深層LSTM作為Decoder,那么就是一個創(chuàng)新。所以正準備跳樓的憋著勁想攢論文畢業(yè)的同學可以從天臺下來了,當然是走下來,不是讓你跳下來,你可以好好琢磨一下這個模型,把各種排列組合都試試,只要你能提出一種新的組合并被證明有效,那恭喜你:施主,你可以畢業(yè)了。

扯遠了,再拉回來。

Encoder-Decoder是個創(chuàng)新游戲大殺器,一方面如上所述,可以搞各種不同的模型組合,另外一方面它的應(yīng)用場景多得不得了,比如對于機器翻譯來說,就是對應(yīng)不同語言的句子,比如X是英語句子,Y是對應(yīng)的中文句子翻譯。再比如對于文本摘要來說,X就是一篇文章,Y就是對應(yīng)的摘要;再比如對于對話機器人來說,X就是某人的一句話,Y就是對話機器人的應(yīng)答;再比如……總之,太多了。哎,那位施主,聽老衲的話,趕緊從天臺下來吧,無數(shù)創(chuàng)新在等著你發(fā)掘呢。

Attention Model

圖1中展示的Encoder-Decoder模型是沒有體現(xiàn)出“注意力模型”的,所以可以把它看作是注意力不集中的分心模型。為什么說它注意力不集中呢?請觀察下目標句子Y中每個單詞的生成過程如下:

其中f是decoder的非線性變換函數(shù)。從這里可以看出,在生成目標句子的單詞時,不論生成哪個單詞,是y1,y2也好,還是y3也好,他們使用的句子X的語義編碼C都是一樣的,沒有任何區(qū)別。而語義編碼C是由句子X的每個單詞經(jīng)過Encoder 編碼產(chǎn)生的,這意味著不論是生成哪個單詞,y1,y2還是y3,其實句子X中任意單詞對生成某個目標單詞yi來說影響力都是相同的,沒有任何區(qū)別(其實如果Encoder是RNN的話,理論上越是后輸入的單詞影響越大,并非等權(quán)的,估計這也是為何Google提出Sequence to Sequence模型時發(fā)現(xiàn)把輸入句子逆序輸入做翻譯效果會更好的小Trick的原因)。這就是為何說這個模型沒有體現(xiàn)出注意力的緣由。這類似于你看到眼前的畫面,但是沒有注意焦點一樣。如果拿機器翻譯來解釋這個分心模型的Encoder-Decoder框架更好理解,比如輸入的是英文句子:Tom chase Jerry,Encoder-Decoder框架逐步生成中文單詞:“湯姆”,“追逐”,“杰瑞”。在翻譯“杰瑞”這個中文單詞的時候,分心模型里面的每個英文單詞對于翻譯目標單詞“杰瑞”貢獻是相同的,很明顯這里不太合理,顯然“Jerry”對于翻譯成“杰瑞”更重要,但是分心模型是無法體現(xiàn)這一點的,這就是為何說它沒有引入注意力的原因。沒有引入注意力的模型在輸入句子比較短的時候估計問題不大,但是如果輸入句子比較長,此時所有語義完全通過一個中間語義向量來表示,單詞自身的信息已經(jīng)消失,可想而知會丟失很多細節(jié)信息,這也是為何要引入注意力模型的重要原因。

上面的例子中,如果引入AM模型的話,應(yīng)該在翻譯“杰瑞”的時候,體現(xiàn)出英文單詞對于翻譯當前中文單詞不同的影響程度,比如給出類似下面一個概率分布值:

(Tom,0.3)(Chase,0.2)(Jerry,0.5)

每個英文單詞的概率代表了翻譯當前單詞“杰瑞”時,注意力分配模型分配給不同英文單詞的注意力大小。這對于正確翻譯目標語單詞肯定是有幫助的,因為引入了新的信息。同理,目標句子中的每個單詞都應(yīng)該學會其對應(yīng)的源語句子中單詞的注意力分配概率信息。這意味著在生成每個單詞Yi的時候,原先都是相同的中間語義表示C會替換成根據(jù)當前生成單詞而不斷變化的Ci。理解AM模型的關(guān)鍵就是這里,即由固定的中間語義表示C換成了根據(jù)當前輸出單詞來調(diào)整成加入注意力模型的變化的Ci。增加了AM模型的Encoder-Decoder框架理解起來如圖2所示。

圖2:引入AM模型的Encoder-Decoder框架

即生成目標句子單詞的過程成了下面的形式:

而每個Ci可能對應(yīng)著不同的源語句子單詞的注意力分配概率分布,比如對于上面的英漢翻譯來說,其對應(yīng)的信息可能如下:

其中,f2函數(shù)代表Encoder對輸入英文單詞的某種變換函數(shù),比如如果Encoder是用的RNN模型的話,這個f2函數(shù)的結(jié)果往往是某個時刻輸入xi后隱層節(jié)點的狀態(tài)值;g代表Encoder根據(jù)單詞的中間表示合成整個句子中間語義表示的變換函數(shù),一般的做法中,g函數(shù)就是對構(gòu)成元素加權(quán)求和,也就是常常在論文里看到的下列公式:

假設(shè)Ci中那個i就是上面的“湯姆”,那么Tx就是3,代表輸入句子的長度,h1=f(“Tom”),h2=f(“Chase”),h3=f(“Jerry”),對應(yīng)的注意力模型權(quán)值分別是0.6,0.2,0.2,所以g函數(shù)就是個加權(quán)求和函數(shù)。如果形象表示的話,翻譯中文單詞“湯姆”的時候,數(shù)學公式對應(yīng)的中間語義表示Ci的形成過程類似下圖:

圖3:Ci的形成過程

這里還有一個問題:生成目標句子某個單詞,比如“湯姆”的時候,你怎么知道AM模型所需要的輸入句子單詞注意力分配概率分布值呢?就是說“湯姆”對應(yīng)的概率分布:

(Tom,0.6)(Chase,0.2)(Jerry,0.2)

是如何得到的呢?

為了便于說明,我們假設(shè)對圖1的非AM模型的Encoder-Decoder框架進行細化,Encoder采用RNN模型,Decoder也采用RNN模型,這是比較常見的一種模型配置,則圖1的圖轉(zhuǎn)換為下圖:

圖4:RNN作為具體模型的Encoder-Decoder框架

那么用下圖可以較為便捷地說明注意力分配概率分布值的通用計算過程:

圖5:AM注意力分配概率計算

對于采用RNN的Decoder來說,如果要生成yi單詞,在時刻i,我們是可以知道在生成Yi之前的隱層節(jié)點i時刻的輸出值Hi的,而我們的目的是要計算生成Yi時的輸入句子單詞“Tom”、“Chase”、“Jerry”對Yi來說的注意力分配概率分布,那么可以用i時刻的隱層節(jié)點狀態(tài)Hi去一一和輸入句子中每個單詞對應(yīng)的RNN隱層節(jié)點狀態(tài)hj進行對比,即通過函數(shù)F(hj,Hi)來獲得目標單詞Yi和每個輸入單詞對應(yīng)的對齊可能性,這個F函數(shù)在不同論文里可能會采取不同的方法,然后函數(shù)F的輸出經(jīng)過Softmax進行歸一化就得到了符合概率分布取值區(qū)間的注意力分配概率分布數(shù)值。圖5顯示的是當輸出單詞為“湯姆”時刻對應(yīng)的輸入句子單詞的對齊概率。絕大多數(shù)AM模型都是采取上述的計算框架來計算注意力分配概率分布信息,區(qū)別只是在F的定義上可能有所不同。

上述內(nèi)容就是論文里面常常提到的Soft Attention Model的基本思想,你能在文獻里面看到的大多數(shù)AM模型基本就是這個模型,區(qū)別很可能只是把這個模型用來解決不同的應(yīng)用問題。那么怎么理解AM模型的物理含義呢?一般文獻里會把AM模型看作是單詞對齊模型,這是非常有道理的。目標句子生成的每個單詞對應(yīng)輸入句子單詞的概率分布可以理解為輸入句子單詞和這個目標生成單詞的對齊概率,這在機器翻譯語境下是非常直觀的:傳統(tǒng)的統(tǒng)計機器翻譯一般在做的過程中會專門有一個短語對齊的步驟,而注意力模型其實起的是相同的作用。在其他應(yīng)用里面把AM模型理解成輸入句子和目標句子單詞之間的對齊概率也是很順暢的想法。

當然,我覺得從概念上理解的話,把AM模型理解成影響力模型也是合理的,就是說生成目標單詞的時候,輸入句子每個單詞對于生成這個單詞有多大的影響程度。這種想法也是比較好理解AM模型物理意義的一種思維方式。

圖6是論文“A Neural Attention Model for Sentence Summarization”中,Rush用AM模型來做生成式摘要給出的一個AM的一個非常直觀的例子。

圖6:句子生成式摘要例子

這個例子中,Encoder-Decoder框架的輸入句子是:“russian defense minister ivanov called sunday for the creation of a joint front for combating global terrorism”。對應(yīng)圖中縱坐標的句子。系統(tǒng)生成的摘要句子是:“russia calls for joint front against terrorism”,對應(yīng)圖中橫坐標的句子。可以看出模型已經(jīng)把句子主體部分正確地抽出來了。矩陣中每一列代表生成的目標單詞對應(yīng)輸入句子每個單詞的AM分配概率,顏色越深代表分配到的概率越大。這個例子對于直觀理解AM是很有幫助作用的。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    27

    文章

    4591

    瀏覽量

    128143
  • 人工智能
    +關(guān)注

    關(guān)注

    1787

    文章

    46061

    瀏覽量

    234988
  • 深度學習
    +關(guān)注

    關(guān)注

    73

    文章

    5422

    瀏覽量

    120591

原文標題:自然語言處理中的Attention Model:是什么及為什么

文章出處:【微信號:Imgtec,微信公眾號:Imagination Tech】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    【《大語言模型應(yīng)用指南》閱讀體驗】+ 基礎(chǔ)知識學習

    今天來學習語言模型自然語言理解方面的原理以及問答回復(fù)實現(xiàn)。 主要是基于深度
    發(fā)表于 08-02 11:03

    圖像識別技術(shù)包括自然語言處理

    圖像識別技術(shù)與自然語言處理是人工智能領(lǐng)域的兩個重要分支,它們很多方面有著密切的聯(lián)系,但也存在一些區(qū)別。 一、圖像識別技術(shù)與自然語言
    的頭像 發(fā)表于 07-16 10:54 ?394次閱讀

    Transformer架構(gòu)自然語言處理中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,自然語言處理(NLP)領(lǐng)域取得了顯著的進步。其中,Transformer架構(gòu)的提出,為NLP領(lǐng)域帶來了革命性的變革。本文將深入探討Transformer架構(gòu)的核心思想、組成部分以及
    的頭像 發(fā)表于 07-09 11:42 ?522次閱讀

    nlp自然語言處理模型怎么做

    自然語言處理(Natural Language Processing,簡稱NLP)是人工智能領(lǐng)域的一個重要分支,它涉及到計算機對人類語言的理解和生成。隨著深度
    的頭像 發(fā)表于 07-05 09:59 ?352次閱讀

    用于自然語言處理的神經(jīng)網(wǎng)絡(luò)有哪些

    自然語言處理(Natural Language Processing, NLP)是人工智能領(lǐng)域的一個重要分支,旨在讓計算機能夠理解和處理人類語言。隨著
    的頭像 發(fā)表于 07-03 16:17 ?327次閱讀

    自然語言處理技術(shù)有哪些

    自然語言處理(Natural Language Processing,簡稱NLP)是人工智能領(lǐng)域的一個分支,它致力于使計算機能夠理解、解釋和生成人類語言。自然語言
    的頭像 發(fā)表于 07-03 14:30 ?598次閱讀

    自然語言處理模式的優(yōu)點

    自然語言處理(Natural Language Processing,簡稱NLP)是人工智能領(lǐng)域的一個重要分支,它致力于使計算機能夠理解、生成和處理人類語言。隨著技術(shù)的發(fā)展,
    的頭像 發(fā)表于 07-03 14:24 ?407次閱讀

    自然語言處理技術(shù)的核心是什么

    自然語言處理(Natural Language Processing,簡稱NLP)是人工智能領(lǐng)域的一個重要分支,其核心目標是使計算機能夠理解、生成和處理人類語言。NLP技術(shù)的發(fā)展已經(jīng)取
    的頭像 發(fā)表于 07-03 14:20 ?340次閱讀

    自然語言處理是什么技術(shù)的一種應(yīng)用

    自然語言處理(Natural Language Processing,簡稱NLP)是人工智能和語言學領(lǐng)域的一個分支,它涉及到使用計算機技術(shù)來處理、分析和生成
    的頭像 發(fā)表于 07-03 14:18 ?309次閱讀

    自然語言處理包括哪些內(nèi)容

    自然語言處理(Natural Language Processing,簡稱NLP)是人工智能領(lǐng)域的一個重要分支,它涉及到計算機與人類語言之間的交互。NLP的目標是讓計算機能夠理解、生成和處理
    的頭像 發(fā)表于 07-03 14:15 ?517次閱讀

    自然語言處理屬于人工智能的哪個領(lǐng)域

    之間的交互,旨在使計算機能夠理解、生成和處理自然語言自然語言處理:人工智能的皇冠上的明珠 引言 人工智能作為一門跨學科的研究領(lǐng)域,涵蓋了
    的頭像 發(fā)表于 07-03 14:09 ?689次閱讀

    什么是自然語言處理 (NLP)

    自然語言處理(Natural Language Processing, NLP)是人工智能領(lǐng)域中的一個重要分支,它專注于構(gòu)建能夠理解和生成人類語言的計算機系統(tǒng)。NLP的目標是使計算機能夠像人類一樣
    的頭像 發(fā)表于 07-02 18:16 ?585次閱讀

    自然語言處理技術(shù)的原理的應(yīng)用

    自然語言處理(Natural Language Processing, NLP)作為人工智能(AI)領(lǐng)域的一個重要分支,旨在使計算機能夠理解和處理人類自然語言。隨著互聯(lián)網(wǎng)的普及和大數(shù)據(jù)
    的頭像 發(fā)表于 07-02 12:50 ?239次閱讀

    神經(jīng)網(wǎng)絡(luò)自然語言處理中的應(yīng)用

    自然語言處理(NLP)是人工智能領(lǐng)域中的一個重要分支,它研究的是如何使計算機能夠理解和生成人類自然語言。隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-01 14:09 ?285次閱讀

    2023年科技圈熱詞“大語言模型”,與自然語言處理有何關(guān)系

    電子發(fā)燒友網(wǎng)報道(文/李彎彎)大語言模型(LLM)是基于海量文本數(shù)據(jù)訓(xùn)練的深度學習模型。它不僅能夠生成自然語言文本,還能夠深入理解文本含義,處理
    的頭像 發(fā)表于 01-02 09:28 ?2061次閱讀