隨著手機、數(shù)碼產品、電動汽車的普及,鋰離子電池在人們生活當中扮演著越來越重要的角色。低能量密度、循環(huán)壽命有限等使用問題常常被人們詬病,但是與這些問題相比,電池安全問題卻是人們關注的焦點。
近些年,由于電池安全問題引發(fā)的事故比比皆是,很多問題造成的后果觸目驚心,比如震驚業(yè)界的波音787“夢幻”客機鋰電池起火事件,以及SamsungGalaxy Note 7 大范圍的電池起火爆炸事件,給鋰離子電池的安全性問題再次敲響了警鐘。
一
鋰離子電池的組成及工作原理
鋰離子電池主要由正極、負極、電解液、隔膜以及外部連接、包裝部件構成。其中,正極、負極包含活性電極物質、導電劑、粘結劑等,均勻涂布于銅箔和鋁箔集流體上。
鋰離子電池的正極電位較高,常為嵌鋰過渡金屬氧化物,或者聚陰離子化合物,如鈷酸鋰、錳酸鋰、三元、磷酸鐵鋰等;鋰離子電池負極物質通常為碳素材料,如石墨和非石墨化碳等;鋰離子電池電解液主要為非水溶液,由有機混合溶劑和鋰鹽構成,其中溶劑多為碳酸之類有機溶劑,鋰鹽多為單價聚陰離子鋰鹽,如六氟磷酸鋰等;鋰離子電池隔膜多為聚乙烯、聚丙稀微孔膜,起到隔離正、負極物質,防止電子通過引起短路,同時能讓電解液中離子通過的作用。
在充電過程中,電池內部,鋰以離子形式從正極脫出,由電解液傳輸穿過隔膜,嵌入到負極中;電池外部,電子由外電路遷移到負極。在放電過程中:電池內部鋰離子從負極脫出、穿過隔膜,嵌入到正極中;電池外部,電子由外電路遷移到正極。隨著充、放電,遷移于電池間的是“鋰離子”,而非單質“鋰”,因此電池被稱為“鋰離子電池”。
二
鋰離子電池的安全隱患
一般來說,鋰離子電池出現(xiàn)安全問題表現(xiàn)為燃燒甚至爆炸,出現(xiàn)這些問題的根源在于電池內部的熱失控,除此之外,一些外部因素,如過充、火源、擠壓、穿刺、短路等問題也會導致安全性問題。鋰離子電池在充放電過程中會發(fā)熱,如果產生的熱量超過了電池熱量的耗散能力,鋰離子電池就會過熱,電池材料就會發(fā)生SEI膜的分解、電解液分解、正極分解、負極與電解液的反應和負極與粘合劑的反應等破壞性的副反應。
1
正極材料的安全隱患
當鋰離子電池使用不當時,導致電池內部溫度的升高,使正極材料會發(fā)生活性物質的分解和電解液的氧化。同時,這兩種反應能夠產生大量的熱,從而造成電池溫度的進一步上升。不同的脫鋰狀態(tài)對活性物質晶格轉變、分解溫度和電池的熱穩(wěn)定性影響相差很大。
2
負極材料的安全隱患
早期使用的負極材料是金屬鋰,組裝的電池在多次充放電后易產生鋰枝晶,進而刺破隔膜,導致電池短路、漏液甚至發(fā)生爆炸。嵌鋰化合物能夠有效避免鋰枝晶的產生,大大提高鋰離子電池的安全性。隨著溫度的升高,嵌鋰狀態(tài)下的碳負極首先與電解液發(fā)生放熱反應。相同的充放電條件下,電解液與嵌鋰人造石墨反應的放熱速率遠大于與嵌鋰的中間相碳微球、碳纖維、焦碳等的反應放熱速率。
3
隔膜與電解液的安全隱患
鋰離子電池的電解液為鋰鹽與有機溶劑的混合溶液,其中商用的鋰鹽為六氟磷酸鋰,該材料在高溫下易發(fā)生熱分解,并與微量的水以及有機溶劑之間進行熱化學反應,降低電解液的熱穩(wěn)定性。電解液有機溶劑為碳酸酯類,這類溶劑沸點、閃點較低,在高溫下容易與鋰鹽釋放PF5的反應,易被氧化。
4
制造工藝中的安全隱患
鋰離子電池在制造過程中,電極制造、電池裝配等過程都會對電池的安全性產生影響。如正極和負極混料、涂布、輥壓、裁片或沖切、組裝、加注電解液的量、封口、化成等諸道工序的質量控制,無一不影響電池的性能和安全性。漿料的均勻度決定了活性物質在電極上分布的均勻性,從而影響電池的安全性。漿料細度太大,電池充放電時會出現(xiàn)負極材料膨脹與收縮比較大的變化,可能出現(xiàn)金屬鋰的析出;漿料細度太小會導致電池內阻過大。涂布加熱溫度過低或烘干時間不足會使溶劑殘留,粘結劑部分溶解,造成部分活性物質容易剝離;溫度過高可能造成粘結劑炭化,活性物質脫落造成電池內部短路。
5
電池使用過程中的安全隱患
鋰離子電池在使用過程中應該盡可能減少過充電或者過放電,特別對于單體容量高的電池,因熱擾動可能會引發(fā)一系列放熱副反應,導致安全性問題。
三
鋰離子電池安全檢測指標
鋰離子電池生產出來后,在到達消費者手中之前,還需要進行一系列檢測,以盡量保證電池的安全性,降低安全隱患。
1、擠壓測試:將充滿電的電池放在一個平面上,由油壓缸施與13±1KN的擠壓力,由直徑為32mm的鋼棒平面擠壓電池,一旦擠壓壓力到達最大停止擠壓,電池不起火,不爆炸即可。
2、撞擊測試:電池充滿電后,放置在一個平面上,將直徑15.8mm的鋼柱垂直置于電池中心,將重量9.1kg的重物從610mm的高度自由落到電池上方的鋼柱上。電池不起火、不爆炸即可。
3、過充測試:將電池用1C充滿電,按照3C過充10V進行過充試驗,當電池過充時電壓上升到一定電壓時穩(wěn)定一段時間,接近一定時間時電池電壓快速上升,當上升至一定限度時,電池高帽拉斷,電壓跌至0V,電池沒有起火、爆炸即可。
4、短路測試:將電池充滿電后用電阻不大于50mΩ的導線將電池正負極短路,測試電池的表面溫度變化,電池表面最高溫度為140℃,電池蓋帽拉開,電池不起火、不爆炸。
5、針刺測試:將充滿電的電池放在一個平面上,用直徑3mm的鋼針沿徑向將電池刺穿。測試電池不起火、不爆炸即可。
6、溫度循環(huán)測試:鋰離子電池溫度循環(huán)試驗是用來模擬鋰離子電池在運輸或貯存過程中,反復暴露在低溫和高溫環(huán)境下,鋰離子電池的安全性,試驗是利用迅速和極端的溫度變化進行的。試驗后樣品應不起火、不爆炸、不漏液。
四
鋰離子電池安全性解決方案
針對鋰離子電池在材料、制造和使用過程中的諸多安全隱患,如何對容易產生安全問題的部分進行改進,是鋰離子電池制造商需要解決的問題。
1
提高電解液的安全性
電解液與正、負電極之間均存在很高的反應活性,尤其在高溫下,為了提高電池的安全性,提高電解液的安全性是比較有效的方法之一。通過加入功能添加劑、使用新型鋰鹽以及使用新型溶劑可以有效解決電解液的安全隱患。
根據(jù)添加劑功能的不同,主要可以分為以下幾種:安全保護添加劑、成膜添加劑、保護正極添加劑、穩(wěn)定鋰鹽添加劑、促鋰沉淀添加劑、集流體防腐添加劑、增強浸潤性添加劑等。
為了改善商用鋰鹽的性能,研究者們對其進行了原子取代,得到了許多衍生物,其中采用全氟烷基取代原子得到的化合物具有閃點高、電導率近似、耐水性增強等諸多優(yōu)點,是一類很有應用前景的鋰鹽化合物。另外,以硼原子為中心原子、與氧配體螯合得到的陰離子鋰鹽,具有很高的熱穩(wěn)定性。
對于溶劑方面,很多研究者提出了一系列新型的有機溶劑,如羧酸酯、有機醚類有機溶劑。另外,離子液體也有一類安全性高的電解液,但是相對普遍使用的碳酸酯類電解液,離子液體的粘度高個數(shù)量級,電導率、離子自擴散系數(shù)較低,離實用化還有很多工作要做。
2
提高電極材料的安全性
磷酸鐵鋰以及三元復合材料被認為是成本低廉、“安全性優(yōu)良”的正極材料,有可能在電動汽車產業(yè)中普及應用。對于正極材料,提高其安全性的常見方法為包覆修飾,如用金屬氧化物對正極材料進行表面包覆,可以阻止正極材料與電解液之間的直接接觸,抑制正極物質發(fā)生相變,提高其結構穩(wěn)定性,降低晶格中陽離子的無序性,以降低副反應產熱。
對于負極材料,由于其表面的往往是鋰離子電池中最容易發(fā)生熱化學分解并放熱的部分,因此提高SEI膜的熱穩(wěn)定性是提高負極材料安全性的關鍵方法。通過微弱氧化、金屬和金屬氧化物沉積、聚合物或者碳包覆,可以提高負極材料熱穩(wěn)定性。
3
改善電池的安全保護設計
除了提高電池材料的安全性,商品鋰離子電池采用的許多安全保護措施,如設置電池安全閥、熱溶保險絲、串聯(lián)具有正溫度系數(shù)的部件、采用熱封閉隔膜、加載專用保護電路、專用電池管理系統(tǒng)等,也是增強安全性的手段。
五
鋰離子電池檢測服務提供方
近年來,鋰離子電池性能及安全檢測行業(yè)成為全球發(fā)展較快的行業(yè)之一,年增長在20%左右。我國檢測行業(yè)已經接近1000億元人民幣的規(guī)模,年平均增長率在25%左右,目前獲得CNAS、CMA認可的實驗室已經超過幾百家,比較知名的有UL美華、德國萊茵、上?;ぱ芯吭簷z測中心、廣州邦禾、TUV南德、電科十八所、兵器集團201所、瑞士通用公證行、MET、北京迪捷姆、廣東計量院、國家動力電池檢測中心等。
六
鋰離子電池安全解決方案提供商
隨著鋰離子電池安全性問題越來越受到人們的關注,不少企業(yè)專門針對鋰離子電池中的安全隱患進行研發(fā),提出卓有效果的電池安全解決方案。
接下來就為大家梳理一下在電池安全領域知名的企業(yè)。
企業(yè) | 技術 |
特斯拉 | 業(yè)界一流的電池管理技術 |
電裝 | 汽車系統(tǒng)頂級供應商 |
博世 | 智能電池管理系統(tǒng) |
大陸 | 雙電池管理電路模塊 |
LG諾伊特 | 完善的鋰電池產業(yè)鏈 |
康奈可 | 全球領先的熱管理系統(tǒng) |
海拉 | 絕緣監(jiān)測領域全球領導者 |
中興派能 | 電動車/大容量儲能用電池模塊結構 |
中航鋰電 | 中間相碳微球軟碳鋰離子儲能電池系統(tǒng)技術 |
猛獅科技 | 超高能量密度圓柱鋰離子電池 |
山東威能 | 新型德標三元復合材料鋰離子電池/超高倍率快充磷酸鐵鋰鋰離子電池 |
上???/td> | 三元軟包動力電芯CPB-LM20 |
超思維 | 先進動力電池BMS的SOC估算技術 |
國新動力 | 高效均衡電池管理系統(tǒng)/電池管理系統(tǒng)硬件在環(huán)仿真技術 |
上海妙益 | BMS電池管理系統(tǒng)、CAN總線組合儀表CAN總線電控 |
深圳科列 | 主動均衡、無線傳輸核心技術功能的BMS |
惠州億能 | 分布式系統(tǒng)拓撲結構 |
新能源科技 | 擁有完整電源管理系統(tǒng)和通訊能力的電池組 |
東莞鉅威 | 實現(xiàn)了動力電池組內主動均衡及動力電池管理 |
寧波拜特 | 電功率、大電流測試系統(tǒng) |
華霆動力 | 大巴快換式電池管理系統(tǒng) |
蘇州杰拓騰 | 獨有的自適應模型軟件算 |
比亞迪 | 電池能量管理、熱管理、自動均衡管理 |
杭州杰能 | 主動均衡電池管理系統(tǒng) |
國軒高科 | Central-Distributed系統(tǒng)構架 |
均勝電子 | 寶馬電池管理系統(tǒng)提供商 |
杭州高特 | 雙向能量轉移均衡技術 |
-
鋰離子電池
+關注
關注
85文章
3205瀏覽量
77479 -
正極材料
+關注
關注
4文章
314瀏覽量
18472 -
負極材料
+關注
關注
12文章
177瀏覽量
14174
原文標題:鋰電池的安全性、檢測及解決方案!
文章出處:【微信號:Recycle-Li-Battery,微信公眾號:鋰電聯(lián)盟會長】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論