0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能“花”落何處

電子工程師 ? 來源:未知 ? 作者:工程師李察 ? 2018-08-11 08:54 ? 次閱讀

你是否曾將應(yīng)用了人工智能技術(shù)的“殺手級應(yīng)用”投入大規(guī)模生產(chǎn)中?

實際上,這種情況較為少見。去年,全世界3182名首席信息官(CIO)中,僅有4%表示他們已將人工智能相關(guān)的應(yīng)用投入生產(chǎn)中,或是在未來12個月內(nèi)有此計劃。首席信息官不一定了解企業(yè)中正在進行的每一個項目,但基本上這個數(shù)字的誤差不會超過它的兩倍。也許,8%的企業(yè)都已將這樣的應(yīng)用投入生產(chǎn)中,但8%這個數(shù)字很可能是對實際情況的一種高估。

為什么會出現(xiàn)這種情況?

今年6月27日,Gartner發(fā)布了一項人工智能技術(shù)成熟程度的研究,為企業(yè)架構(gòu)師和科技創(chuàng)新者提供相關(guān)見解。該研究的重點在于人工智能技術(shù)的成熟程度,而不在于人工智能領(lǐng)域企業(yè)的發(fā)展狀況。

從表面上看,人工智能領(lǐng)域在過去十年中取得了突破性的進展。不斷有新的、寶貴的機會涌現(xiàn)出來。在這十年中,在與人工智能有關(guān)的研究、會議、研究生項目、初創(chuàng)公司、風(fēng)險資金、公司中的并購(M&A)活動、人工智能相關(guān)的工作發(fā)布、專利申請上,我們都取得了很大的進步。

但我們看到的只是其中的一部分,還須考慮的是:

如今,偉大的研究發(fā)現(xiàn)過多地涌現(xiàn),使得技術(shù)空間變得混亂。在很多情況下,當下的技術(shù)突破在下一季度或第二年就會過時;

系統(tǒng)工程的指導(dǎo)方針(以及專業(yè)知識)較為缺乏;

如今的人工智能技術(shù)就像信息通信技術(shù)在1960年的發(fā)展狀況一樣,這種情況短時間內(nèi)很難改變;

最糟糕的是,由于缺乏新的、使用人工智能技術(shù)的“殺手級應(yīng)用”推動商務(wù)人士在這方面開展投資項目,人工智能相關(guān)的應(yīng)用投入大規(guī)模生產(chǎn)的進程近乎處于停滯狀態(tài)。

讓我們把目光聚焦在“殺手級應(yīng)用”的“真空”狀態(tài)上。

我們向IT領(lǐng)導(dǎo)者或企業(yè)管理者詢問了人工智能應(yīng)用的問題,并向他們征求文字或口頭回答,回答通常會分為以下四類:

第一,決策支持/擴大化——幫助人們變得更加聰明

第二,虛擬代理——熟悉用戶的文字或發(fā)言

第三,決策自動化——任務(wù)自動化或優(yōu)化

第四,智能產(chǎn)品——嵌入式的人工智能

這幾類(先不說第二項)和老式汽車的市場非常相似——老式汽車的想法在十九世紀已經(jīng)出現(xiàn),在二十世紀早期出現(xiàn)了對應(yīng)的產(chǎn)品。人們在熟悉的環(huán)境下可以更好地發(fā)揮想象。

因此,我們有例如:

二十世紀九十年代初的類似商業(yè)智能化的產(chǎn)物(決策支持/擴大化)

以“決策自動化”為特征的任務(wù)自動化和任務(wù)優(yōu)化,實際上,我們從計算機時代的開始就在這么做了

智能產(chǎn)品——一個已經(jīng)近乎沒有實際意義的、過時的標簽

客戶對虛擬代理存在著普遍的興趣。事實上,表示在人工智能技術(shù)上進行了投資的客戶中,有三分之二提到了“面向用戶”(通常與聊天有關(guān))的項目。但是除非縮窄這些項目的定義,這些項目要達成一定規(guī)模的難度非常大。除了幾家大型科技公司外,沒有哪家公司具備開發(fā)出一個可以回答所有人所有問題的全能聊天機器人的能力,洞察引擎(Insights Engine)在這方面比聊天機器人做得更好。而從目前的情況來看,這些大公司的產(chǎn)品也并不是那么完美。谷歌的Duplex、亞馬遜的Alexa Challenge中的對話可能是目前最為智能的,但企業(yè)是否會對這些項目大規(guī)模投資仍然懸而未決。

未來是難以預(yù)見的。除了聊天機器人之外,其余項目都僅是在“老式汽車”上的改進。那些能夠讓企業(yè)開創(chuàng)使用人工智能技術(shù)的新商業(yè)計劃的巨大突破在哪里呢?

然而,行業(yè)、廠商、分析人員、咨詢顧問乃至全世界范圍內(nèi)的企業(yè),都并不了解這些巨大突破會是什么。

這其中一部分的問題是,人工智能最適合解決的問題,可能已超出那些想找到新的“殺手級商業(yè)應(yīng)用”的人的能力和經(jīng)驗認知。

回到商用計算機的早期年代(二十世紀中期),企業(yè)購買計算機,運行人們已在紙上處理了數(shù)個世紀的問題。當人們知道如何在紙上進行記賬,那么將相同的邏輯應(yīng)用到計算機上就相對容易了。

在如今這個人工智能技術(shù)應(yīng)用開始生產(chǎn)的早期時代,我們無意中失去了知道我們應(yīng)該如何處理一些事情的能力。研究筆記中寫道:

“我們現(xiàn)在能夠用深度神經(jīng)網(wǎng)絡(luò)(DNN)為基礎(chǔ)的系統(tǒng)對照片做面部識別。人類(我們靈長類動物的祖先)已經(jīng)有至少五千萬年的面部識別經(jīng)驗,但總的來說,我們并沒有一套有效、系統(tǒng)的方法來進行面部識別。

我們只是運用人類的本能(不像科技開發(fā)者那樣),用我們神經(jīng)系統(tǒng)中不同的、與生俱來的學(xué)習(xí)回路來進行面部識別。其中具體的過程是模糊的。一個十五個月大的孩子是如何分辨出他父親和母親的圖片的?我們并不了解。日常的人類經(jīng)驗不足以讓我們建立一套實現(xiàn)臉部識別的技術(shù)?!?/p>

我們在缺乏這樣的見解的同時,也缺乏實際經(jīng)驗以驅(qū)動對相關(guān)應(yīng)用的創(chuàng)造或開發(fā)。擬人法可能會讓我們誤入歧途。

這些局限之外,我們?nèi)砸嘈牛?/p>

科學(xué)將以驚人的速度繼續(xù)進步;

人工智能技術(shù)將會被應(yīng)用在更多產(chǎn)品中;

到2020年,人工智能技術(shù)將存在于基本上所有的新型軟件產(chǎn)品中;

廠商將會用這些嵌入式的技術(shù)增加并擴大其產(chǎn)品功能,此后企業(yè)就會因商業(yè)型人工智能的優(yōu)勢進行投資,而非開發(fā)相關(guān)技術(shù)。

等待能夠帶動重大商業(yè)投資的“殺手級應(yīng)用”被發(fā)現(xiàn)的過程中,我們將繼續(xù)以實際的、策略性的方式進行小型投資,為業(yè)務(wù)帶來實際價值。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器人
    +關(guān)注

    關(guān)注

    210

    文章

    28129

    瀏覽量

    205894
  • 人工智能
    +關(guān)注

    關(guān)注

    1791

    文章

    46698

    瀏覽量

    237197

原文標題:人工智能“花”落何處

文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    幸得一好書,特此來分享。感謝平臺,感謝作者。受益匪淺。 在閱讀《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》的第6章后,我深刻感受到人工智能在能源科學(xué)領(lǐng)域中的巨大潛力和廣泛應(yīng)用。這一章詳細
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    很幸運社區(qū)給我一個閱讀此書的機會,感謝平臺。 《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章關(guān)于AI與生命科學(xué)的部分,為我們揭示了人工智能技術(shù)在生命科學(xué)領(lǐng)域中的廣泛應(yīng)用和深遠影響。在
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第一章人工智能驅(qū)動的科學(xué)創(chuàng)新學(xué)習(xí)心得

    周末收到一本新書,非常高興,也非常感謝平臺提供閱讀機會。 這是一本挺好的書,包裝精美,內(nèi)容詳實,干活滿滿。 《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》這本書的第一章,作為整個著作的開篇
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    RISC-V在人工智能圖像處理領(lǐng)域的應(yīng)用前景十分廣闊,這主要得益于其開源性、靈活性和低功耗等特點。以下是對RISC-V在人工智能圖像處理應(yīng)用前景的詳細分析: 一、RISC-V的基本特點 RISC-V
    發(fā)表于 09-28 11:00

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析 想問下哪些比較容易學(xué) 不過好像都是要學(xué)的
    發(fā)表于 09-26 15:24

    人工智能ai4s試讀申請

    目前人工智能在繪畫對話等大模型領(lǐng)域應(yīng)用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個需要研究的課題,本書對ai4s基本原理和原則,方法進行描訴,有利于總結(jié)經(jīng)驗,擬按照要求準備相關(guān)體會材料??茨芊裼兄谌腴T和提高ss
    發(fā)表于 09-09 15:36

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新

    ! 《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》 這本書便將為讀者徐徐展開AI for Science的美麗圖景,與大家一起去了解: 人工智能究竟幫科學(xué)家做了什么? 人工智能將如何改變我們所生
    發(fā)表于 09-09 13:54

    人工智能從何而來

    當大家都在討論人工智能的時候,有一個問題似乎很少有人關(guān)注,即:人工智能從何而來?
    的頭像 發(fā)表于 09-06 09:27 ?534次閱讀

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內(nèi)外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產(chǎn)業(yè)博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能領(lǐng)域集產(chǎn)品
    發(fā)表于 08-22 15:00

    FPGA在人工智能中的應(yīng)用有哪些?

    FPGA(現(xiàn)場可編程門陣列)在人工智能領(lǐng)域的應(yīng)用非常廣泛,主要體現(xiàn)在以下幾個方面: 一、深度學(xué)習(xí)加速 訓(xùn)練和推理過程加速:FPGA可以用來加速深度學(xué)習(xí)的訓(xùn)練和推理過程。由于其高并行性和低延遲特性
    發(fā)表于 07-29 17:05

    人工智能概述

    人工智能關(guān)鍵技術(shù)概述
    發(fā)表于 07-17 17:17 ?0次下載

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V2)

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V2) 課程類別 課程名稱 視頻課程時長 視頻課程鏈接 課件鏈接 人工智能 參賽基礎(chǔ)知識指引 14分50秒 https
    發(fā)表于 05-10 16:46

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V1)

    課程類別 課程名稱 視頻課程時長 視頻課程鏈接 課件鏈接 人工智能 參賽基礎(chǔ)知識指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:參賽基礎(chǔ)知識指引
    發(fā)表于 04-01 10:40

    嵌入式人工智能的就業(yè)方向有哪些?

    嵌入式人工智能的就業(yè)方向有哪些? 在新一輪科技革命與產(chǎn)業(yè)變革的時代背景下,嵌入式人工智能成為國家新型基礎(chǔ)建設(shè)與傳統(tǒng)產(chǎn)業(yè)升級的核心驅(qū)動力。同時在此背景驅(qū)動下,眾多名企也紛紛在嵌入式人工智能領(lǐng)域布局
    發(fā)表于 02-26 10:17

    生成式人工智能和感知式人工智能的區(qū)別

    生成式人工智能和感知式人工智能人工智能領(lǐng)域中兩種重要的研究方向。本文將探討這兩種人工智能的區(qū)別。 生成式人工智能(Generative A
    的頭像 發(fā)表于 02-19 16:43 ?1483次閱讀