0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

【連載】深度學習筆記6:神經(jīng)網(wǎng)絡(luò)優(yōu)化算法之從SGD到Adam

人工智能實訓營 ? 2018-08-20 12:47 ? 次閱讀

從前面的學習中,帶大家一起學會了如何手動搭建神經(jīng)網(wǎng)絡(luò),以及神經(jīng)網(wǎng)絡(luò)的正則化等實用層面的內(nèi)容。這些都使得我們能夠更深入的理解神經(jīng)網(wǎng)絡(luò)的機制,而并不是初次接觸深度學習就上手框架,雖然對外宣稱神經(jīng)網(wǎng)絡(luò)是個黑箱機制,但是作為學習者我們極度有必要搞清楚算法在每個環(huán)節(jié)到底都干了些什么。

今天講的是深度學習的一個大的主題——優(yōu)化算法。采用何種方式對損失函數(shù)進行迭代優(yōu)化,這是機器學習的一大主題之一,當一個機器學習問題有了具體的模型和評估策略,所有的機器學習問題都可以形式化為一個最優(yōu)化問題。這也是為什么我們說優(yōu)化理論和凸優(yōu)化算法等學科是機器學習一大支柱的原因所在。從純數(shù)學的角度來看,所有的數(shù)學模型盡管形式不一,各有頭面,但到最后幾乎到可以歸約為最優(yōu)化問題。所以,有志于奮戰(zhàn)在機器學習和深度學習領(lǐng)域的各位,學好最優(yōu)化,責無旁貸啊。

要說機器學習和深度學習的優(yōu)化算法,梯度下降必然是核心所在。神經(jīng)網(wǎng)絡(luò)發(fā)展至今,優(yōu)化算法層出不窮,但大底是出不了梯度下降的框框架架。這一篇筆記,筆者就和大家一起學習和回顧深度學習中常用的優(yōu)化算法。在前面手動搭建神經(jīng)網(wǎng)絡(luò)的代碼實踐中,我們對于損失函數(shù)的優(yōu)化采用了一般的梯度下降法,所以本篇總結(jié)就從梯度下降法開始。

梯度下降法 Gradient Descent


640?wx_fmt=png

想必大家對于梯度下降是很熟悉了,選擇負梯度方向進行參數(shù)更新算是常規(guī)操作了。話不多說,對于多層神經(jīng)網(wǎng)絡(luò)如何執(zhí)行梯度下降:

defupdate_parameters_with_gd(parameters,grads,learning_rate):
"""
Updateparametersusingonestepofgradientdescent

Arguments:
parameters--pythondictionarycontainingyourparameterstobeupdated:
parameters['W'+str(l)]=Wl
parameters['b'+str(l)]=bl
grads--pythondictionarycontainingyourgradientstoupdateeachparameters:
grads['dW'+str(l)]=dWl
grads['db'+str(l)]=dbl
learning_rate--thelearningrate,scalar.
Returns:
parameters--pythondictionarycontainingyourupdatedparameters
"""
L=len(parameters)//2#numberoflayersintheneuralnetworks
#Updateruleforeachparameter
forlinrange(L):
parameters['W'+str(l+1)]=parameters['W'+str(l+1)]-learning_rate*grads['dW'+str(l+1)]
parameters['b'+str(l+1)]=parameters['b'+str(l+1)]-learning_rate*grads['db'+str(l+1)]
returnparameters

在上述代碼中,我們傳入含有權(quán)值和偏置的字典、梯度字段和更新的學習率作為參數(shù),按照開頭的公式編寫權(quán)值更新代碼,一個簡單的多層網(wǎng)絡(luò)的梯度下降算法就寫出來了。

小批量梯度下降法 mini-batch Gradient Descent

工業(yè)數(shù)據(jù)環(huán)境下,直接對大數(shù)據(jù)執(zhí)行梯度下降法訓練往往處理速度緩慢,這時候?qū)⒂柧毤指畛尚∫稽c的子集進行訓練就非常重要了。這個被分割成的小的子集就叫做 mini-batch,意為小批量。對每一個小批量同時執(zhí)行梯度下降會大大提高訓練效率。在實際利用代碼實現(xiàn)的時候,小批量梯度下降算法通常包括兩個步驟:充分打亂數(shù)據(jù)(shuffle)和分組組合數(shù)據(jù)(partition)。如下圖所示。

640?wx_fmt=png
shuffle
640?wx_fmt=png
partition

具體代碼實現(xiàn)為:

def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
  """
  Creates a list of random minibatches from (X, Y)

  Arguments:
  X -- input data, of shape (input size, number of examples)
  Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)
  mini_batch_size -- size of the mini-batches, integer

  Returns:
  mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
  """

  np.random.seed(seed)    
  m = X.shape[1]         
  mini_batches = []  # Step 1: Shuffle (X, Y)
  permutation = list(np.random.permutation(m))
  shuffled_X = X[:, permutation]
  shuffled_Y = Y[:, permutation].reshape((1,m))  # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
  num_complete_minibatches = math.floor(m/mini_batch_size) 
  for k in range(0, num_complete_minibatches):
    mini_batch_X = shuffled_X[:, 0:mini_batch_size]
    mini_batch_Y = shuffled_Y[:, 0:mini_batch_size]

    mini_batch = (mini_batch_X, mini_batch_Y)
    mini_batches.append(mini_batch)  # Handling the end case (last mini-batch < mini_batch_size)
  if m % mini_batch_size != 0:
    mini_batch_X = shuffled_X[:, 0: m-mini_batch_size*math.floor(m/mini_batch_size)]
    mini_batch_Y = shuffled_Y[:, 0: m-mini_batch_size*math.floor(m/mini_batch_size)]

    mini_batch = (mini_batch_X, mini_batch_Y)
    mini_batches.append(mini_batch)  
return mini_batches

小批量梯度下降的實現(xiàn)思路非常清晰,先打亂數(shù)據(jù)在分組數(shù)據(jù),需要注意的細節(jié)在于最后一個小批量所含的訓練樣本數(shù),通常而言最后一個小批量會少于前面批量所含樣本數(shù)。

隨機梯度下降 Stochastic Gradient Descent

當小批量所含的訓練樣本數(shù)為 1 的時候,小批量梯度下降法就變成了隨機梯度下降法(SGD)。SGD雖然以單個樣本為訓練單元訓練速度會很快,但犧牲了向量化運算所帶來的便利性,在較大數(shù)據(jù)集上效率并不高。
我們可以看一下梯度下降和隨機梯度下降在實現(xiàn)上的差異:

# GD
X = data_input Y = labels parameters = initialize_parameters(layers_dims)
for i in range(0, num_iterations): # Forward propagation a, caches = forward_propagation(X, parameters) # Compute cost. cost = compute_cost(a, Y) # Backward propagation. grads = backward_propagation(a, caches, parameters) # Update parameters. parameters = update_parameters(parameters, grads)

# SGDX = data_input Y = labels parameters = initialize_parameters(layers_dims)
for i in range(0, num_iterations):
for j in range(0, m): # Forward propagation a, caches = forward_propagation(X[:,j], parameters) # Compute cost cost = compute_cost(a, Y[:,j]) # Backward propagation grads = backward_propagation(a, caches, parameters) # Update parameters. parameters = update_parameters(parameters, grads)

所以,從本質(zhì)上看,梯度下降法、小批量梯度下降法和隨機梯度下降法,并沒有區(qū)別。唯一的區(qū)別就在于它們執(zhí)行一次訓練過程所需要用到的訓練樣本數(shù)。梯度下降法用到的是全集訓練數(shù)據(jù),隨機梯度下降則是單個樣本數(shù)據(jù),而小批量則是介于二者之間。

帶動量的梯度下降法(momentum)


正如上圖中看到的一樣,我們假設(shè)梯度下降的橫向為參數(shù) W 的下降方向,而偏置 b 的下降方向為縱軸,我們總是希望在縱軸上的震蕩幅度小一點,學習速度慢一點,而在橫軸上學習速度快一點,無論是小批量梯度下降還是隨機梯度下降,好像都不能避免這個問題。為了解決這個問題,帶動量的梯度下降法來了。帶動量的梯度下降考慮歷史梯度的加權(quán)平均值作為速率進行優(yōu)化。執(zhí)行公式如下:

640?wx_fmt=png
根據(jù)上述公式編寫帶動量的梯度下降法實現(xiàn)代碼:

defupdate_parameters_with_momentum(parameters,grads,v,beta,learning_rate):
"""
UpdateparametersusingMomentum

Arguments:
parameters--pythondictionarycontainingyourparameters:
parameters['W'+str(l)]=Wl
parameters['b'+str(l)]=bl
grads--pythondictionarycontainingyourgradientsforeachparameters:
grads['dW'+str(l)]=dWl
grads['db'+str(l)]=dbl
v--pythondictionarycontainingthecurrentvelocity:
v['dW'+str(l)]=...
v['db'+str(l)]=...
beta--themomentumhyperparameter,scalar
learning_rate--thelearningrate,scalar

Returns:
parameters--pythondictionarycontainingyourupdatedparameters
v--pythondictionarycontainingyourupdatedvelocities
"""

L=len(parameters)//2#numberoflayersintheneuralnetworks

#Momentumupdateforeachparameter
forlinrange(L):#computevelocities
v['dW'+str(l+1)]=beta*v['dW'+str(l+1)]+(1-beta)*grads['dW'+str(l+1)]
v['db'+str(l+1)]=beta*v['db'+str(l+1)]+(1-beta)*grads['db'+str(l+1)]#updateparameters
parameters['W'+str(l+1)]=parameters['W'+str(l+1)]-learning_rate*v['dW'+str(l+1)]
parameters['b'+str(l+1)]=parameters['b'+str(l+1)]-learning_rate*v['db'+str(l+1)]
returnparameters,v

實現(xiàn)帶動量的梯度下降的關(guān)鍵點有兩個:一是動量是考慮歷史梯度進行梯度下降的,二是這里的需要指定的超參數(shù)變成了兩個:一個是學習率 learning_rate,一個是梯度加權(quán)參數(shù)beta。

Adam算法

Adam 全稱為 Adaptive Moment Estimation,是在帶動量的梯度下降法的基礎(chǔ)上融合了一種稱為 RMSprop(加速梯度下降)的算法而成的。相較于帶動量的梯度下降法,無論是RMSprop 還是 Adam,其中的改進思路都在于如何讓橫軸上的學習更快以及讓縱軸上的學習更慢。RMSprop 和 Adam 在帶動量的梯度下降法的基礎(chǔ)上,引入了平方梯度,并對速率進行了偏差糾正。具體計算公式如下:

640?wx_fmt=png

實現(xiàn)代碼如下:

def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01,
                beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8):
  """
  Update parameters using Adam

  Arguments:
  parameters -- python dictionary containing your parameters:
          parameters['W' + str(l)] = Wl
          parameters['b' + str(l)] = bl
  grads -- python dictionary containing your gradients for each parameters:
          grads['dW' + str(l)] = dWl
          grads['db' + str(l)] = dbl
  v -- Adam variable, moving average of the first gradient, python dictionary
  s -- Adam variable, moving average of the squared gradient, python dictionary
  learning_rate -- the learning rate, scalar.
  beta1 -- Exponential decay hyperparameter for the first moment estimates 
  beta2 -- Exponential decay hyperparameter for the second moment estimates 
  epsilon -- hyperparameter preventing division by zero in Adam updates

  Returns:
  parameters -- python dictionary containing your updated parameters 
  v -- Adam variable, moving average of the first gradient, python dictionary
  s -- Adam variable, moving average of the squared gradient, python dictionary
  """

  L = len(parameters) // 2         
  v_corrected = {}            
  s_corrected = {}             

  # Perform Adam update on all parameters
  for l in range(L):
    v["dW" + str(l+1)] = beta1 * v["dW" + str(l+1)] + (1 - beta1) * grads['dW'+str(l+1)]
    v["db" + str(l+1)] = beta1 * v["db" + str(l+1)] + (1 - beta1) * grads['db'+str(l+1)]    # Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected".  
    v_corrected["dW" + str(l+1)] = v["dW" + str(l+1)] / (1 - beta1**t)
    v_corrected["db" + str(l+1)] = v["db" + str(l+1)] / (1 - beta1**t)    # Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s".
    s["dW" + str(l+1)] = beta2 * s["dW" + str(l+1)] + (1 - beta2) * (grads["dW" + str(l+1)])**2
    s["db" + str(l+1)] = beta2 * s["db" + str(l+1)] + (1 - beta2) * (grads["db" + str(l+1)])**2


    # Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected".
    s_corrected["dW" + str(l+1)] = s["dW" + str(l+1)] / (1 - beta2**t)
    s_corrected["db" + str(l+1)] = s["db" + str(l+1)] / (1 - beta2**t)    # Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters".

    parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * v_corrected["dW" + str(l+1)] / (np.sqrt(s_corrected["dW" + str(l+1)]) + epsilon)
    parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * v_corrected["db" + str(l+1)] / (np.sqrt(s_corrected["db" + str(l+1)]) + epsilon)  
return parameters, v, s

除了以上這些算法,還有一些像 Adadelta 之類的算法我們沒有提到,有需要了解的同學可以自行查找相關(guān)資料。最后用一個圖來展示各種優(yōu)化算法的效果:




本文來自《自興動腦人工智能》項目部:凱文




聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    神經(jīng)網(wǎng)絡(luò)優(yōu)化器有哪些

    神經(jīng)網(wǎng)絡(luò)優(yōu)化器是深度學習中用于調(diào)整網(wǎng)絡(luò)參數(shù)以最小化損失函數(shù)的重要工具。這些優(yōu)化器通過不同的策略來
    的頭像 發(fā)表于 07-11 16:33 ?348次閱讀

    BP神經(jīng)網(wǎng)絡(luò)學習機制

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network),即反向傳播神經(jīng)網(wǎng)絡(luò),是一種基于梯度下降算法的多層前饋神經(jīng)網(wǎng)絡(luò),其學習
    的頭像 發(fā)表于 07-10 15:49 ?231次閱讀

    深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指傳統(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時,我們需
    的頭像 發(fā)表于 07-04 13:20 ?359次閱讀

    深度神經(jīng)網(wǎng)絡(luò)的設(shè)計方法

    結(jié)構(gòu)的構(gòu)建,還包括激活函數(shù)的選擇、優(yōu)化算法的應(yīng)用、正則化技術(shù)的引入等多個方面。本文將從網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計、關(guān)鍵組件選擇、優(yōu)化與正則化策略、以及未來發(fā)展趨勢四個方面詳細探討
    的頭像 發(fā)表于 07-04 13:13 ?261次閱讀

    神經(jīng)網(wǎng)絡(luò)優(yōu)化算法有哪些

    神經(jīng)網(wǎng)絡(luò)優(yōu)化算法深度學習領(lǐng)域中的核心技術(shù)之一,旨在通過調(diào)整網(wǎng)絡(luò)中的參數(shù)(如權(quán)重和偏差)來最小化
    的頭像 發(fā)表于 07-03 16:01 ?293次閱讀

    神經(jīng)網(wǎng)絡(luò)反向傳播算法的優(yōu)缺點有哪些

    神經(jīng)網(wǎng)絡(luò)反向傳播算法(Backpropagation Algorithm)是一種廣泛應(yīng)用于深度學習和機器學習領(lǐng)域的
    的頭像 發(fā)表于 07-03 11:24 ?367次閱讀

    神經(jīng)網(wǎng)絡(luò)反向傳播算法的作用是什么

    神經(jīng)網(wǎng)絡(luò)反向傳播算法(Backpropagation)是一種用于訓練人工神經(jīng)網(wǎng)絡(luò)算法,它通過計算損失函數(shù)關(guān)于網(wǎng)絡(luò)參數(shù)的梯度來更新
    的頭像 發(fā)表于 07-03 11:17 ?625次閱讀

    神經(jīng)網(wǎng)絡(luò)算法的結(jié)構(gòu)有哪些類型

    神經(jīng)網(wǎng)絡(luò)算法深度學習的基礎(chǔ),它們在許多領(lǐng)域都有廣泛的應(yīng)用,如圖像識別、自然語言處理、語音識別等。神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)有很多種類型,每種類型都有其
    的頭像 發(fā)表于 07-03 09:50 ?287次閱讀

    神經(jīng)網(wǎng)絡(luò)算法的優(yōu)缺點有哪些

    的優(yōu)點 自學習能力:神經(jīng)網(wǎng)絡(luò)算法具有強大的自學習能力,能夠大量數(shù)據(jù)中自動提取特征,無需人工干預(yù)。這使得
    的頭像 發(fā)表于 07-03 09:47 ?542次閱讀

    深度學習與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學習和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)作為其中的重要分支,已經(jīng)在多個領(lǐng)域取得了顯著的應(yīng)用成果。圖像識
    的頭像 發(fā)表于 07-02 18:19 ?584次閱讀

    基于神經(jīng)網(wǎng)絡(luò)算法的模型構(gòu)建方法

    神經(jīng)網(wǎng)絡(luò)是一種強大的機器學習算法,廣泛應(yīng)用于各種領(lǐng)域,如圖像識別、自然語言處理、語音識別等。本文詳細介紹了基于神經(jīng)網(wǎng)絡(luò)算法的模型構(gòu)建方法,包
    的頭像 發(fā)表于 07-02 11:21 ?326次閱讀

    深度神經(jīng)網(wǎng)絡(luò)模型有哪些

    、Sigmoid或Tanh。 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN): 卷積神經(jīng)網(wǎng)絡(luò)深度學習中最重
    的頭像 發(fā)表于 07-02 10:00 ?620次閱讀

    如何訓練和優(yōu)化神經(jīng)網(wǎng)絡(luò)

    神經(jīng)網(wǎng)絡(luò)是人工智能領(lǐng)域的重要分支,廣泛應(yīng)用于圖像識別、自然語言處理、語音識別等多個領(lǐng)域。然而,要使神經(jīng)網(wǎng)絡(luò)在實際應(yīng)用中取得良好效果,必須進行有效的訓練和優(yōu)化。本文將從神經(jīng)網(wǎng)絡(luò)的訓練過程
    的頭像 發(fā)表于 07-01 14:14 ?282次閱讀

    詳解深度學習神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

    處理技術(shù)也可以通過深度學習來獲得更優(yōu)異的效果,比如去噪、超分辨率和跟蹤算法等。為了跟上時代的步伐,必須對深度學習
    的頭像 發(fā)表于 01-11 10:51 ?1641次閱讀
    詳解<b class='flag-5'>深度</b><b class='flag-5'>學習</b>、<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>與卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的應(yīng)用

    淺析深度神經(jīng)網(wǎng)絡(luò)壓縮與加速技術(shù)

    深度神經(jīng)網(wǎng)絡(luò)深度學習的一種框架,它是一種具備至少一個隱層的神經(jīng)網(wǎng)絡(luò)。與淺層神經(jīng)網(wǎng)絡(luò)類似
    的頭像 發(fā)表于 10-11 09:14 ?607次閱讀
    淺析<b class='flag-5'>深度</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>壓縮與加速技術(shù)