0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

魯棒控制器在四輪獨(dú)立轉(zhuǎn)向電動(dòng)汽車上的應(yīng)用

ml8z_IV_Technol ? 來(lái)源:未知 ? 作者:胡薇 ? 2018-08-28 08:56 ? 次閱讀

1前言

近年來(lái),自動(dòng)駕駛技術(shù)已成為智能交通系統(tǒng)中用來(lái)減少交通問(wèn)題的新興研究熱點(diǎn)。路徑跟蹤是自主地面車輛(AGV)的基本功能和主要任務(wù)。設(shè)計(jì)的路徑跟蹤控制器被要求能夠使車輛以較小的跟蹤誤差跟蹤目標(biāo)路徑,包括側(cè)向偏移和航向誤差。

與前輪轉(zhuǎn)向車輛相比,四輪轉(zhuǎn)向車輛具有出色的機(jī)動(dòng)性,操縱穩(wěn)定性和路徑追蹤能力,因此它更適合被作為自主地面車輛(AGV)使用。由于四輪轉(zhuǎn)向車輛的路徑跟蹤問(wèn)題比前輪轉(zhuǎn)向車輛的路徑跟蹤問(wèn)題更復(fù)雜,因此目前四輪轉(zhuǎn)向車輛的路徑跟蹤控制策略仍然相對(duì)有限。

本文提出了一種新型的帶有線控轉(zhuǎn)向系統(tǒng)的四輪獨(dú)立轉(zhuǎn)向電動(dòng)汽車,并設(shè)計(jì)了用于路徑跟蹤的控制器。通過(guò)MATLAB / Simulink數(shù)值仿真比較所設(shè)計(jì)的μ綜合+ 4WIS + DYC與LQR + 4WIS + DYC兩種路徑跟蹤控制器性能。目的是設(shè)計(jì)一種先進(jìn)的控制器,以改善路徑跟蹤能力,并獲得良好的抗參數(shù)攝動(dòng)和外部干擾的魯棒性。

2四輪獨(dú)立轉(zhuǎn)向電動(dòng)車構(gòu)型

本團(tuán)隊(duì)提出并制造了一種新型的4WIS(四輪獨(dú)立轉(zhuǎn)向)電動(dòng)車,如圖1所示。為了實(shí)現(xiàn)四輪獨(dú)立轉(zhuǎn)向,4WIS電動(dòng)汽車由四個(gè)SBW(線控轉(zhuǎn)向)系統(tǒng)組成。從圖2可以看出,SBW系統(tǒng)是轉(zhuǎn)向系統(tǒng)和懸架系統(tǒng)的集成設(shè)計(jì),主要由轉(zhuǎn)向電機(jī)、蝸桿減速器、減震器、轉(zhuǎn)向盤轉(zhuǎn)角傳感器等組成。車輪可通過(guò)減速器、上滑動(dòng)柱、上擺動(dòng)臂、下擺動(dòng)臂和下滑動(dòng)柱圍繞由所述轉(zhuǎn)向電機(jī)驅(qū)動(dòng)的主銷旋轉(zhuǎn)。利用方向盤轉(zhuǎn)角傳感器實(shí)時(shí)測(cè)量各輪的轉(zhuǎn)向角信號(hào),進(jìn)行路徑跟蹤控制。表1顯示了4WIS EV的結(jié)構(gòu)參數(shù)。

圖1 4WIS EV

圖2 SBW系統(tǒng):1,蝸桿和齒輪減速器;2,轉(zhuǎn)向馬達(dá);3,上擺動(dòng)臂;4,減震器;5,彈簧;6,下擺動(dòng)臂;7,下滑動(dòng)柱;8,上滑動(dòng)柱;9,車輪轉(zhuǎn)向角傳感器

表1 4WIS EV的結(jié)構(gòu)參數(shù)

3建模

四輪獨(dú)立轉(zhuǎn)向電動(dòng)汽車動(dòng)力學(xué)模型

在這一部分中,將4WIS EV的動(dòng)力學(xué)模型簡(jiǎn)化為2自由度的單軌模型。如圖3所示,只考慮側(cè)向和橫擺運(yùn)動(dòng),以盡量減少建模的復(fù)雜性,假設(shè)縱向速度為u,單軌模型有三個(gè)輸入:前轉(zhuǎn)向角δf、后轉(zhuǎn)向角δr和附加橫擺力矩ΔMz。單軌模型的非線性動(dòng)力學(xué)方程如下:

其中v是車輛的側(cè)向速度,r是車輛的橫擺角速度,F(xiàn)yf和Fyr分別是前后的側(cè)向輪胎力。

在控制器設(shè)計(jì)中,假設(shè)輪胎滑移角很小,輪胎力與輪胎滑移角成線性關(guān)系,于是有:

將上述兩個(gè)方程的后者帶入前者,則信號(hào)軌跡模型的動(dòng)力學(xué)方程可表示為:

路徑跟蹤

圖3為4WIS EV的路徑跟蹤模型。xy為車身坐標(biāo)系,xdyd坐標(biāo)系表示其目標(biāo)路徑上的車輛方向。

圖3 4WIS EV路徑跟蹤動(dòng)力學(xué)模型

在本文中,路徑跟蹤問(wèn)題等價(jià)于最小化側(cè)向位置誤差和橫擺角誤差,這兩個(gè)誤差可以表示為:

取一個(gè)關(guān)于時(shí)間的導(dǎo)數(shù),上述方程可以重寫為:

ρ為目標(biāo)路徑的曲率半徑。

側(cè)向位置誤差的導(dǎo)數(shù)推導(dǎo)如下:

結(jié)合前面幾個(gè)方程,4WIS電動(dòng)汽車路徑跟蹤的動(dòng)力學(xué)方程可以寫成狀態(tài)空間形式:

狀態(tài)向量,控制輸入向量和外部輸入向量,系數(shù)矩陣A,B,C,D和E由下給出:

4魯棒控制

在路徑跟蹤過(guò)程中,車輛速度和輪胎側(cè)偏剛度等參數(shù)不能始終保持不變。此外,側(cè)風(fēng)、變徑曲率等外部擾動(dòng)也是不可避免的。結(jié)果表明,4WIS EV的路徑跟蹤性能嚴(yán)重惡化.因此,有必要設(shè)計(jì)一種對(duì)參數(shù)擾動(dòng)和外部擾動(dòng)具有良好魯棒性的控制器。在此基礎(chǔ)上,設(shè)計(jì)了一種基于μ綜合方法的魯棒控制器。

魯棒控制閉環(huán)系統(tǒng)

用于路徑跟蹤的4WIS EV魯棒控制閉環(huán)系統(tǒng)如圖4所示。該系統(tǒng)主要由G模型、控制器K和其他性能對(duì)象元素組成。

圖4 用于路徑跟蹤的4WIS EV魯棒閉環(huán)系統(tǒng)

模型G是一個(gè)攝動(dòng)模型結(jié)合標(biāo)準(zhǔn)模型Gnorm不確定塊Δ。G可以以上線性分式變換(LFT)的形式表示為。不確定塊Δ反映了速度和輪胎側(cè)偏剛度的參數(shù)不確定性,是一個(gè)對(duì)角矩陣且范數(shù)有界,?閉環(huán)系統(tǒng)具有三個(gè)輸入:路徑信息W、外部干擾d和測(cè)量噪聲n。輸出eU和eY用于評(píng)價(jià)閉環(huán)系統(tǒng)的魯棒性。加權(quán)函數(shù)WU和WP反映了U和?Y的性能輸出, 權(quán)重函數(shù)Wn反映了不同頻域?qū)y(cè)量噪聲的影響n。為了達(dá)到預(yù)期的魯棒性能,選擇了適當(dāng)?shù)募訖?quán)函數(shù),并將它們表示如下:

μ綜合與D-K迭代

在圖5中,P(s)表示由名義模型和加權(quán)函數(shù)組成的19個(gè)輸入和17個(gè)輸出開環(huán)系統(tǒng)的傳遞函數(shù)矩陣。用于路徑跟蹤的4WIS EV的廣義系統(tǒng)如圖6所示。

圖5 用于路徑跟蹤的4WIS EV魯棒控制開環(huán)系統(tǒng)

圖6 用于路徑跟蹤的4WIS EV廣義系統(tǒng)

對(duì)于魯棒性能分析,不確定的塊ΔP結(jié)構(gòu)定義為:

第一個(gè)不確定塊Δ用來(lái)描述參數(shù)擾動(dòng),第二個(gè)不確定塊是一個(gè)虛擬的不確定性塊ΔP,它是利用μ綜合方法來(lái)表示魯棒性能要求的。塊ΔP的輸入是eU和eY,塊ΔP的輸出是d,n和W。

為了達(dá)到魯棒的性能要求,需尋找一個(gè)穩(wěn)定控制器K(S),使結(jié)構(gòu)奇異值對(duì)于每個(gè)頻率滿足以下條件:

其中FL(P,K)是P和K的下線性分式變換,為了解決上述方程中的問(wèn)題,采用了D-K迭代法??紤]到:

其中DΔP是任何一個(gè)滿,且遵循DΔP=ΔPD的矩陣集。

于是,方程中的問(wèn)題就等價(jià)于:

5仿真分析

在所設(shè)計(jì)控制器的基礎(chǔ)上,利用MATLAB/SIMULINK中的9自由度非線性車輛模型,對(duì)4WIS電動(dòng)汽車的路徑跟蹤進(jìn)行了數(shù)值仿真。仿真結(jié)構(gòu)圖如圖7所示。四輪轉(zhuǎn)向角δfl,δfr,δrl,δrr是基于Ackerman轉(zhuǎn)向幾何關(guān)系與單軌模型的δf和δr推導(dǎo)得到。在仿真中分別進(jìn)行了單移線和雙移線兩種工況,對(duì)所提出的控制器的路徑跟蹤性能進(jìn)行了評(píng)估。車輛的名義參數(shù)列于表1。

圖7 仿真結(jié)構(gòu)圖類

最優(yōu)控制器與魯棒控制器對(duì)比仿真

在此仿真情況下,4WIS EV在不考慮參數(shù)擾動(dòng)的情況下,以20m/s的速度進(jìn)行單移線變換機(jī)動(dòng),對(duì)比最優(yōu)和魯棒控制器。這里使用表1中的4WIS EV的名義參數(shù)。圖8(A)、(B)和(C)描述了最優(yōu)控制器和魯棒控制器的輸出,從中可以看出魯棒控制器的前輪轉(zhuǎn)向角和后輪轉(zhuǎn)向角都小于最優(yōu)控制器。然而,它們的附加橫擺力矩曲線顯示出相似的變化趨勢(shì)和幅度??梢酝茢?,控制器輸出的大小將對(duì)以后的路徑跟蹤精度產(chǎn)生重要的影響。圖8(D)和(E)顯示車輛狀態(tài)、側(cè)向速度和橫擺角速度。魯棒控制器的側(cè)向速度比最優(yōu)控制器小得多,但橫擺角速度相差不大。兩個(gè)控制器的路徑跟蹤結(jié)果如圖8(F)、(G)和(H)所示。結(jié)果表明,魯棒控制器對(duì)橫擺角和側(cè)向位置的路徑跟蹤誤差具有較小的超調(diào)響應(yīng)和較低的穩(wěn)態(tài)誤差,這表明魯棒控制器的路徑跟蹤性能優(yōu)于最優(yōu)控制器。

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

圖8 單移線變換策略的仿真結(jié)果:(a)前輪轉(zhuǎn)向角;(b)后輪轉(zhuǎn)向角;(c)附加橫擺力矩;(d)側(cè)向速度;(e)橫擺角速度;(f)橫擺角誤差;(g)側(cè)向位置誤差;(h)路徑跟蹤結(jié)果

魯棒性能

這個(gè)仿真實(shí)例的目的是評(píng)估之前提出的魯棒控制器的魯棒性。在不同的縱向速度和摩擦系數(shù)下,四輪獨(dú)立轉(zhuǎn)向電動(dòng)車實(shí)行雙移線變道策略。

圖9表明了在不同道路下雙移線變道策略的結(jié)果,(結(jié)冰道路μ=0.3,濕路μ=0.6,干路μ=0.9)。從圖9(a)、(b)、(c)中可以看出,在高摩擦系數(shù)下控制器輸出的峰值低于低摩擦系數(shù)下的峰值,且低摩擦系數(shù)下的波動(dòng)更為顯著。在不同道路條件下的側(cè)向速度和橫擺角速度分別示于圖9(d)、(e)。可以看出隨著摩擦系數(shù)的增加,側(cè)向速度和橫擺角的振幅減小。圖9(f)、(g)顯示橫擺角和側(cè)向位置的跟蹤誤差,從中我們能夠清楚地看出,結(jié)冰路面條件下路徑跟蹤誤差比高摩擦系數(shù)路面條件下的更大。不同道路條件下的實(shí)際路徑在圖9(h)中進(jìn)行了比較。很明顯,四輪獨(dú)立轉(zhuǎn)向電動(dòng)車在高摩擦路面條件下具有較好的路徑跟蹤性能。然而我們還發(fā)現(xiàn),即使是低摩擦系數(shù)路面情況的路徑跟蹤絕對(duì)誤差也很小,這意味著所設(shè)計(jì)的控制器在不同的路面狀況下具有很強(qiáng)的穩(wěn)定魯棒性和良好的性能魯棒性。

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

圖9 考慮不同摩擦系數(shù)的雙移線變道策略的仿真結(jié)果:(a)前輪轉(zhuǎn)向角;(b)后輪轉(zhuǎn)向角;(c)附件橫擺力矩;(d)側(cè)向速度;(e)橫擺角速度;(f)橫擺角誤差;(g)側(cè)向位置誤差;(h)路徑跟蹤結(jié)果

在設(shè)計(jì)控制器前,假定車輛的縱向速度為恒定。然而,這并不能在實(shí)際中實(shí)現(xiàn)。為了解決這一問(wèn)題,在魯棒控制器設(shè)計(jì)過(guò)程中考慮了縱向速度的攝動(dòng)。圖(10)顯示了不同縱向速度(u=10m/s,u=20m/s,u=30m/s)下雙移線變道策略的仿真結(jié)果??紤]到不同的縱向速度導(dǎo)致了通過(guò)目標(biāo)路徑的時(shí)間不同,在這種情況下的仿真結(jié)果參考縱向位移而不是時(shí)間,以便于更好地顯示。

圖10(a),(b),(c)顯示了由魯棒控制器產(chǎn)生的控制信號(hào),從中我們可以觀察到高的縱向速度導(dǎo)致了高峰值和大的波動(dòng)。就側(cè)向速度和橫擺角速度而言,我們可以從10(d)和(e)中得出相似的結(jié)論??梢园l(fā)現(xiàn)在車輛狀態(tài)中存在多個(gè)波動(dòng),這是由系統(tǒng)擾動(dòng)引起的。圖10(f)和(g)示出了橫擺角和側(cè)向位置的路徑跟蹤誤差,這表明路徑跟蹤誤差隨著縱向速度的增加而增大。在圖10(h)中比較了不同縱向速度下的實(shí)際路徑。雖然車輛縱向速度發(fā)生變化,但路徑跟蹤性能不會(huì)嚴(yán)重變差。

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

圖10 考慮不同縱向速度的雙移線變道策略的仿真結(jié)果:(a)前輪轉(zhuǎn)向角;(b)后輪轉(zhuǎn)向角;(c)附件橫擺力矩;(d)側(cè)向速度;(e)橫擺角速度;(f)橫擺角誤差;(g)側(cè)向位置誤差;(h)路徑跟蹤結(jié)果

6結(jié)論

本文提出了一種新型的具有線控轉(zhuǎn)向系統(tǒng)的四輪獨(dú)立轉(zhuǎn)向電動(dòng)車,為了解決四輪獨(dú)立轉(zhuǎn)向電動(dòng)車的路徑跟蹤控制問(wèn)題,利用μ綜合方法設(shè)計(jì)了魯棒控制器。在控制器設(shè)計(jì)過(guò)程中,考慮了參數(shù)攝動(dòng)、變路徑曲率和噪聲測(cè)量。利用Hankel范數(shù)逼近,實(shí)現(xiàn)了魯棒控制器的降階?;诿x模型,通過(guò)單移線工況進(jìn)行最優(yōu)和魯棒控制器的路徑跟蹤性能比較,結(jié)果表明魯棒控制器具有更好的路徑跟蹤能力。為了評(píng)估魯棒控制器的魯棒性,在不同的道路條件和縱向速度下進(jìn)行了雙移線變道仿真案例。仿真結(jié)果表明,所設(shè)計(jì)的魯棒控制器具有很好的路徑跟蹤性能,對(duì)嚴(yán)重的參數(shù)攝動(dòng)和外部擾動(dòng)具有足夠的穩(wěn)定魯棒性和良好的性能魯棒性。驗(yàn)證設(shè)計(jì)的控制器性能的最佳方法是實(shí)驗(yàn),所以我們未來(lái)的工作重點(diǎn)是圖1所示的四輪獨(dú)立轉(zhuǎn)向電動(dòng)車的實(shí)際測(cè)試,目前控制相關(guān)的硬件和傳感器的測(cè)試正在開展。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 電動(dòng)汽車
    +關(guān)注

    關(guān)注

    155

    文章

    11691

    瀏覽量

    227872
  • 自動(dòng)駕駛
    +關(guān)注

    關(guān)注

    781

    文章

    13449

    瀏覽量

    165257

原文標(biāo)題:四輪獨(dú)立轉(zhuǎn)向電動(dòng)汽車路徑跟蹤的魯棒性控制

文章出處:【微信號(hào):IV_Technology,微信公眾號(hào):智車科技】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    SAF-C164CI-LM用于電動(dòng)汽車控制器SCH(原創(chuàng))

    本帖最后由 ORCAD__PCB 于 2012-8-7 15:22 編輯 SAF-C164CI-LM用于電動(dòng)汽車控制器SCH電動(dòng)汽車
    發(fā)表于 08-07 15:19

    電動(dòng)汽車電機(jī)

    ,充電速度較慢,壽命較短,逐漸被其他蓄電池所取代由于電動(dòng)汽車采用動(dòng)力電池作為車載能源,其容量受到限制,為盡可能的延長(zhǎng)續(xù)駛里程,大多數(shù)驅(qū)動(dòng)系統(tǒng)都采用了能量回饋技術(shù),即在汽車制動(dòng)時(shí),通過(guò)控制器將車輪損耗的動(dòng)能
    發(fā)表于 03-13 13:39

    北京首輛私人純電動(dòng)汽車上

    北京首輛私人純電動(dòng)汽車上路據(jù)新華網(wǎng)報(bào)導(dǎo),隨著北京新能源汽車首批首期目錄公布,純電動(dòng)汽車銷售日前北京正式開始向私人開閘。3月2日,北京市科委攜手北汽新能源
    發(fā)表于 04-22 14:46

    金升陽(yáng)電動(dòng)汽車電源設(shè)計(jì)參考

    電動(dòng)汽車和傳統(tǒng)燃油汽車的區(qū)別在于動(dòng)力部分,這也是電動(dòng)汽車最核心的部分。純電動(dòng)汽車系統(tǒng)通常包括3個(gè)系統(tǒng),即電力驅(qū)動(dòng)子系統(tǒng)、主能源子系統(tǒng)和輔助控制
    發(fā)表于 01-28 23:59

    【TL6748 DSP申請(qǐng)】獨(dú)立驅(qū)動(dòng)電動(dòng)汽車

    申請(qǐng)理由:電動(dòng)汽車主控ECU項(xiàng)目描述:獨(dú)立驅(qū)動(dòng)電動(dòng)汽車,采用4個(gè)BLDC,4個(gè)BLDC分別由
    發(fā)表于 09-10 11:06

    新能源電動(dòng)汽車整車控制器之燃料電池汽車控制

    電動(dòng)汽車整車控制器項(xiàng)目一、整車控制拓?fù)浣Y(jié)構(gòu)圖二、整車電氣控制拓?fù)浣Y(jié)構(gòu)圖 三、系統(tǒng)構(gòu)成 、整車控制
    發(fā)表于 11-10 15:22

    如何高效評(píng)價(jià)電動(dòng)汽車的驅(qū)動(dòng)電機(jī)與控制器?

    `  如何高效評(píng)價(jià)電動(dòng)汽車的驅(qū)動(dòng)電機(jī)與控制器?    橫河測(cè)試測(cè)量1周前    9月27日,橫河與Metron和DTS聯(lián)合舉辦汽車測(cè)試研討會(huì),引進(jìn)日本最新的汽車研發(fā)測(cè)試方案,向國(guó)內(nèi)相關(guān)
    發(fā)表于 10-21 21:14

    適合純電動(dòng)汽車控制系統(tǒng)

    、轉(zhuǎn)向和油門等系統(tǒng)的伺服機(jī)構(gòu)。 控制裝置有不同的結(jié)構(gòu),通常配置得很完美,如自動(dòng)變速車上轉(zhuǎn)向
    發(fā)表于 11-01 10:47

    電動(dòng)助力轉(zhuǎn)向系統(tǒng)控制器的設(shè)計(jì)方案

    的應(yīng)用正處于起步期,而作為EPS核心技術(shù)——控制器的研究,更是具有重要的理論意義和實(shí)踐指導(dǎo)價(jià)值。本文對(duì)某輕型載貨汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)的控制器
    發(fā)表于 07-29 06:06

    怎么實(shí)現(xiàn)基于CAN總線的電動(dòng)汽車控制系統(tǒng)設(shè)計(jì)?

    CAN總線的特點(diǎn)是什么?CAN總線電動(dòng)汽車上的應(yīng)用是什么?怎么實(shí)現(xiàn)基于CAN總線的電動(dòng)汽車控制系統(tǒng)設(shè)計(jì)?
    發(fā)表于 05-17 07:07

    電動(dòng)汽車整車控制器(VCU)技術(shù)及開發(fā)流程剖析

    **電動(dòng)汽車整車控制器(VCU)技術(shù)及開發(fā)流程剖析**整車控制器(VCU),電動(dòng)汽車的大腦,相當(dāng)于電腦的Windows,手機(jī)的Andrio。作為電動(dòng)
    發(fā)表于 09-08 07:09

    獨(dú)立驅(qū)動(dòng)電動(dòng)車高速CAN網(wǎng)絡(luò)數(shù)據(jù)分析技術(shù)

    獨(dú)立驅(qū)動(dòng)電動(dòng)車高速CAN網(wǎng)絡(luò)數(shù)據(jù)分析技術(shù) 伴隨著電動(dòng)汽車的發(fā)展,CAN總線通訊技術(shù)應(yīng)用越來(lái)越廣泛,它可為純
    發(fā)表于 05-08 08:37 ?1447次閱讀
    <b class='flag-5'>四</b><b class='flag-5'>輪</b><b class='flag-5'>獨(dú)立</b>驅(qū)動(dòng)<b class='flag-5'>電動(dòng)</b>車高速CAN網(wǎng)絡(luò)數(shù)據(jù)分析技術(shù)

    基于獨(dú)立驅(qū)動(dòng)電動(dòng)汽車的動(dòng)力學(xué)仿真模型

    基于獨(dú)立驅(qū)動(dòng)電動(dòng)汽車的動(dòng)力學(xué)仿真模型
    發(fā)表于 12-23 02:03 ?5次下載

    基于線控電動(dòng)汽車的驅(qū)動(dòng)轉(zhuǎn)向一體化控制器研究

    針對(duì)目前純電動(dòng)汽車輪轂電機(jī)驅(qū)動(dòng)和電機(jī)轉(zhuǎn)向都是作為獨(dú)立技術(shù)進(jìn)行研究的問(wèn)題,對(duì)線控電動(dòng)汽車結(jié)構(gòu)、
    發(fā)表于 03-05 14:29 ?5次下載
    基于線控<b class='flag-5'>電動(dòng)汽車</b>的驅(qū)動(dòng)<b class='flag-5'>轉(zhuǎn)向</b>一體化<b class='flag-5'>控制器</b>研究

    基于CAN總線通訊技術(shù)實(shí)現(xiàn)汽車獨(dú)立驅(qū)動(dòng)控制系統(tǒng)的設(shè)計(jì)

    伴隨著電動(dòng)汽車的發(fā)展,CAN總線通訊技術(shù)應(yīng)用越來(lái)越廣泛,它可為純電動(dòng)汽車上獨(dú)立驅(qū)動(dòng)控制,以及
    的頭像 發(fā)表于 04-05 17:43 ?2686次閱讀
    基于CAN總線通訊技術(shù)實(shí)現(xiàn)<b class='flag-5'>汽車</b><b class='flag-5'>四</b><b class='flag-5'>輪</b><b class='flag-5'>獨(dú)立</b>驅(qū)動(dòng)<b class='flag-5'>控制</b>系統(tǒng)的設(shè)計(jì)