1.引言
開關(guān)電源是利用現(xiàn)代電力電子技術(shù),控制開關(guān)晶體管開通和關(guān)斷的時間比率,維持穩(wěn)定 輸出電壓的一種電源。從上世紀(jì)90年代以來開關(guān)電源相繼進入各種電子、電器設(shè)備領(lǐng)域,計 算機、程控交換機、通訊、電子檢測設(shè)備電源、控制設(shè)備電源等都已廣泛地使用了開關(guān)電源。 隨著電源技術(shù)的發(fā)展,低電壓,大電流的開關(guān)電源因其技術(shù)含量高,應(yīng)用廣,越來越受到人 們重視。在開關(guān)電源中,正激式和反激式有電路拓?fù)浣Y(jié)構(gòu)簡單,輸入輸出電氣隔離等優(yōu)點, 廣泛應(yīng)用于中小功率電源變換場合。與正、反激式相比,推挽式變換器變壓器利用率高,輸 出功率較大,而且由于使用MOS管,基本不存在勵磁不平衡的現(xiàn)象。因此,一般認(rèn)為推挽式變 換器適用于低壓,大電流,功率較大的場合。
2.基本推挽變換技術(shù)
推挽式直直變換器的電路結(jié)構(gòu)如圖1(a)所示,波形如圖1(b)所示。推挽式逆變器將直 流電壓變換為交流方波加在高頻變壓器的原邊,在隔離變壓器的副邊只有一個二極管壓降。 當(dāng)開關(guān)管 S1 導(dǎo)通時,二極管 D1 承受正壓而導(dǎo)通,而 D2 由于反向偏置而截止;因此,
3 電路的設(shè)計
3.1 主電路的設(shè)計
開關(guān)電源的主電路拓?fù)浣Y(jié)構(gòu)如圖2所示,詳細(xì)參數(shù)如下:輸入電壓為12(1±10%)V,輸 出電壓為24V,輸出電流為12A,工作頻率為33kHz。主電路采用的是推挽型電路,主開關(guān)管 用的是IRFP064N,在主電路上輸入端有兩個1000uF/50V并聯(lián)的輸入濾波電容,在輸入的電路 的正級接有一個2.2uH的輸入濾波電感(電感取值與輸出濾波電感一樣)。電路中變壓器的 設(shè)計跟一般變換器所用變壓器設(shè)計類似,只需注意繞線方式和銅線選擇,由于本變換器的電 流過大,故采用多股細(xì)線并繞的方式。
在輸出端用的是同步整流技術(shù),在低電壓大電流功率變換器中,若采用傳統(tǒng)的普通二 極管或肖特基二極管整流由于其正向?qū)▔航荡?低壓硅二極管正向壓降約0.7V,肖特基二 極管正向壓降約0.45V,新型低電壓肖特基二極管可達0.32V),整流損耗成為變換器的主要 損耗,無法滿足低電壓大電流開關(guān)電源高效率,小體積的需要。MOSFET導(dǎo)通時的伏安特性為 一線性電阻,稱為通態(tài)電阻DS R ,低壓MOSFET新器件的通態(tài)電阻很小,如:
IRF2807(75V,82A)、IRL2910(100V,55A)通態(tài)電阻分別為0.013Ω、0.O26Ω,它們在通過20A 電流時,通態(tài)壓降不到0.2V。另外,功率MOSFET開關(guān)時間短,輸入阻抗高,這些特點使得MOSFET 成為低電壓大電流功率變換器首選整流器件。MOSFET的柵-源問的硅氧化層耐壓有限,一旦 被擊穿則永久損壞,所以實際上柵-源電壓最大值在50-75V之間,如電壓超過75V,應(yīng)該在柵 極上接穩(wěn)壓管.并從成本綜合考慮,選用IRF2807。需要特別指出的是圖中MOS管做為整流 管的接法,有,有些讀者可能會認(rèn)為接法有誤,這是由于普通的參考用書沒有描述電力MOSFET的正柵壓反向輸出特性。實際上,電力MOSFET除需要介紹非飽和區(qū)、飽和區(qū)和截 止區(qū)外,還應(yīng)考慮反向電阻區(qū),反向電阻區(qū)與正向電阻區(qū)有相類似的溝道特性。這是由于變 壓器二次側(cè)電壓為交變方波,整流管要承受反壓但電力MOSFET是逆導(dǎo)器件,若工作在正向 電阻區(qū)將無法整流。
在電壓輸出部分,使用了LC濾波電路,電感電容參數(shù)是根據(jù)LC濾波中K式濾波器濾波 特性曲線及計算公式計算出來的,并在實驗后做了調(diào)整。(K式濾波是指串臂阻抗和并臂阻抗 的乘積是一個不隨頻率變化的常數(shù),量綱為電阻)
3.2 控制電路的設(shè)計
控制電路選用SG3525芯片,它是美國硅通用半導(dǎo)體公司(Silicon General)推出的用 于驅(qū)動N溝道功率MOSFET的電流控制型PWM控制器,它具有很高的溫度穩(wěn)定性和較低的噪聲等 級,具有欠壓保護和外部封鎖功能,能方便地實現(xiàn)過壓過流保護,能輸出兩路波形一致、相 位差為180°的PWM信號,有效地減少輸出電流的紋波,適合于推挽拓?fù)潆娐?。?a target="_blank">控制芯片 SG3525出來的兩路控制信號分別用來控制一個IRFP064N,達到了驅(qū)動兩個開關(guān)管的目的,且 二者電流方向相反。
控制電路使用了閉環(huán)控制方式令輸出電壓保持恒定,由檢測到的電壓經(jīng)過光耦隔離后傳 到SG3525與一個標(biāo)準(zhǔn)值進行比較,以此來調(diào)整占空比并相應(yīng)調(diào)整輸出電壓,如圖3反饋電壓的 檢測,光耦選用7840不但起到了隔離作用使輸出電壓與輸入成比例變化。由于芯片所需電源 不能由輸入電源直接提供,所以特用了兩個直流穩(wěn)壓小芯片來提供電源,基準(zhǔn)源要求穩(wěn)定的 電壓,在SG3525本身所提供的穩(wěn)壓輸出的基礎(chǔ)上再通過一個TL431的穩(wěn)壓,經(jīng)過測量完全達 到要求。
在輸出整流電路中,當(dāng)整流管Q3的受正向電壓導(dǎo)通時,應(yīng)及時驅(qū)動Q3導(dǎo)通,以減小壓降 和損耗。
4 實驗結(jié)果和波形分析
圖5是推挽電路兩路門極脈沖波形(示波器幅值*10),兩個脈沖基本是相互對稱的,方 向相反則勵磁方向相反可以避免勵磁不平衡,電路此時工作在Vi =11V左右。圖5為變壓器輸 出電壓,也就是同步整流管Q3和Q4的驅(qū)動信號,由圖可以看出上下兩個波形是對稱的,說明 他們是分別只有為正的時刻才導(dǎo)通。在實驗室里用示波器測出了輸出電壓的波形,紋波并不 大,完全能達到電器類電源的要求。
實驗所得波形和分析的波形基本吻合,只是在開關(guān)轉(zhuǎn)換 瞬間, 電壓有小尖峰,這是由電路的雜散參數(shù)引起的。該電路的工作效率經(jīng)過測量大約在 90%左右,基本達到設(shè)計的要求。
5 結(jié)語
仿真分析和實驗結(jié)果驗證了理論分析和公式推導(dǎo)的正確性,表明推挽正激電路應(yīng)用于該 變換器中具有以下優(yōu)點:
1)抑制了開關(guān)管漏源極電壓尖峰,降低了開關(guān)管的電壓應(yīng)力和功率損耗,整機效率高。
2)變壓器雙向磁化,磁芯利用率高。
3)輸入電流紋波安秒積分較其它拓?fù)湫?,減小了輸入濾波器體積。
4)輸出在經(jīng)過LC 濾波后,輸出的波形振幅很小。
本文作者創(chuàng)新點為:利用推挽技術(shù)使變換器變壓器利用率高,輸出功率較大,而且由于使 用MOS管,基本不存在勵磁不平衡的現(xiàn)象,在輸出部分使用了同步整流技術(shù),減少了電壓在整 流管上的損耗,提前了整個變換器的效率,使用了LC濾波,基本消除了高次波的污染。
-
變換器
+關(guān)注
關(guān)注
17文章
2082瀏覽量
109076 -
計算機
+關(guān)注
關(guān)注
19文章
7372瀏覽量
87637 -
交換機
+關(guān)注
關(guān)注
20文章
2610瀏覽量
99107
發(fā)布評論請先 登錄
相關(guān)推薦
評論