0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

循環(huán)神經網(wǎng)絡注意力的模擬實現(xiàn)

電子設計 ? 作者:電子設計 ? 2018-10-22 08:58 ? 次閱讀

我們觀察PPT的時候,面對整個場景,不會一下子處理全部場景信息,而會有選擇地分配注意力,每次關注不同的區(qū)域,然后將信息整合來得到整個的視覺印象,進而指導后面的眼球運動。將感興趣的東西放在視野中心,每次只處理視野中的部分,忽略視野外區(qū)域,這樣做最大的好處是降低了任務的復雜度。

深度學習領域中,處理一張大圖的時候,使用卷積神經網(wǎng)絡的計算量隨著圖片像素的增加而線性增加。如果參考人的視覺,有選擇地分配注意力,就能選擇性地從圖片或視頻中提取一系列的區(qū)域,每次只對提取的區(qū)域進行處理,再逐漸地把這些信息結合起來,建立場景或者環(huán)境的動態(tài)內部表示,這就是本文所要講述的循環(huán)神經網(wǎng)絡注意力模型。

怎么實現(xiàn)的呢?

把注意力問題當做一系列agent決策過程,agent可以理解為智能體,這里用的是一個RNN網(wǎng)絡,而這個決策過程是目標導向的。簡要來講,每次agent只通過一個帶寬限制的傳感器觀察環(huán)境,每一步處理一次傳感器數(shù)據(jù),再把每一步的數(shù)據(jù)隨著時間融合,選擇下一次如何配置傳感器資源;每一步會接受一個標量的獎勵,這個agent的目的就是最大化標量獎勵值的總和。

下面我們來具體講解一下這個網(wǎng)絡。

如上所示,圖A是帶寬傳感器,傳感器在給定位置選取不同分辨率的圖像塊,大一點的圖像塊的邊長是小一點圖像塊邊長的兩倍,然后resize到和小圖像塊一樣的大小,把圖像塊組輸出到B。

圖B是glimpse network,這個網(wǎng)絡是以theta為參數(shù),兩個全連接層構成的網(wǎng)絡,將傳感器輸出的圖像塊組和對應的位置信息以線性網(wǎng)絡的方式結合到一起,輸出gt。

圖C是循環(huán)神經網(wǎng)絡即RNN的主體,把glimpse network輸出的gt投進去,再和之前內部信息ht-1結合,得到新的狀態(tài)ht,再根據(jù)ht得到新的位置lt和新的行為at,at選擇下一步配置傳感器的位置和數(shù)量,以更好的觀察環(huán)境。在配置傳感器資源的時候,agent也會受到一個獎勵信號r,比如在識別中,正確分類r是1,錯誤分類r是0,agent的目標是最大化獎勵信號r的和:

梯度的近似可以表示為:

公式(1)也叫做增強學習的規(guī)則,它包括運用當前的策略運行agent去獲得交互序列,然后根據(jù)可以增大獎勵信號的行為調整theta。它的訓練過程就是用增強學習的方法學習具體任務策略。關于給定任務,根據(jù)模型做出的一系列決定給出表現(xiàn)評價,最大化表現(xiàn)評價,對其進行端到端的優(yōu)化。

首先為什么要用增強學習呢?因為數(shù)據(jù)的狀態(tài)不是非常明確的,不是可以直接監(jiān)督或者非監(jiān)督來訓練的,比如機器人的控制很難完全精確。

那么什么是增強學習呢?

增強學習關注的是智能體如何在環(huán)境中采取一系列行為,從而獲得最大的累積回報。RL是從環(huán)境狀態(tài)到動作的映射的學習,我們把這個映射稱為策略。通過增強學習,一個智能體(agent)應該知道在什么狀態(tài)下應該采取什么行為。

假設一個智能體處于下圖(a)中所示的4x3的環(huán)境中。從初始狀態(tài)開始,它需要每個時間選擇一個行為(上、下、左、右)。在智能體到達標有+1或-1的目標狀態(tài)時與環(huán)境的交互終止。如果環(huán)境是確定的,很容易得到一個解:[上,上,右,右,右]??上е悄荏w的行動不是可靠的(類似現(xiàn)實中對機器人的控制不可能完全精確),環(huán)境不一定沿這個解發(fā)展。下圖(b)是一個環(huán)境轉移模型的示意,每一步行動以0.8的概率達到預期,0.2的概率會垂直于運動方向移動,撞到(a)圖中黑色模塊后會無法移動。兩個終止狀態(tài)分別有+1和-1的回報,其他狀態(tài)有-0.4的回報?,F(xiàn)在智能體要解決的是通過增強學習(不斷的試錯、反饋、學習)找到最優(yōu)的策略(得到最大的回報)。

上述問題可以看作為一個馬爾科夫決策過程,最終的目標是通過一步步決策使整體的回報函數(shù)期望最優(yōu)。

提到馬爾科夫,大家通常會立刻想起馬爾可夫鏈(Markov Chain)以及機器學習中更加常用的隱式馬爾可夫模型(Hidden Markov Model, HMM)。它們都具有共同的特性便是馬爾可夫性:當一個隨機過程在給定現(xiàn)在狀態(tài)及所有過去狀態(tài)情況下,未來狀態(tài)的條件概率分布僅依賴于當前狀態(tài);換句話說,在給定現(xiàn)在狀態(tài)時,它與過去狀態(tài)是條件獨立的,那么此隨機過程即具有馬爾可夫性質。具有馬爾可夫性質的過程通常稱之為馬爾可夫過程。

馬爾可夫決策過程(Markov Decision Process),其也具有馬爾可夫性,與上面不同的是MDP考慮了動作,即系統(tǒng)下個狀態(tài)不僅和當前的狀態(tài)有關,也和當前采取的動作有關。

一個馬爾科夫決策過程(Markov Decision Processes, MDP)有五個關鍵元素組成{S,A,{Psa},γ,R},其中:

這個就是馬爾科夫決策過程。講完馬爾科夫決策之后我們回過頭回顧一下訓練的過程:每次agent只通過一個帶寬限制的傳感器觀察環(huán)境,每一步處理一次傳感器數(shù)據(jù),再把每一步的數(shù)據(jù)隨著時間融合,選擇下一次如何配置傳感器資源;每一步會接受一個標量的獎勵,這個agent的目的就是最大化標量獎勵值的總和。

注意力模型的效果如何

把注意力模型和全連接網(wǎng)絡以及卷積神經網(wǎng)絡進行比較,實驗證明了模型可以從多個glimpse結合的信息中成功學習,并且學習的效果優(yōu)于卷積神經網(wǎng)絡。

由于注意力模型可以關注圖像相關部分,忽視無關部分,所以能夠在在有干擾的情況下識別,識別效果也是比其他網(wǎng)絡要好的。下面這個圖表現(xiàn)的是注意力的路徑,表明網(wǎng)絡可以避免計算不重要的部分,直接探索感興趣的部分。

基于循環(huán)神經網(wǎng)絡的注意力模型比較有特色的地方就在于:

●提高計算效率,處理比較大的圖片的時候非常好用;

●阻塞狀態(tài)下也能識別。

我們講了半天,一個重要的概念沒有講,下面來講講循環(huán)神經網(wǎng)絡RNN。

我們做卷積神經網(wǎng)絡的時候樣本的順序并不受到關注,而對于自然語言處理,語音識別,手寫字符識別來說,樣本出現(xiàn)的時間順序是非常重要的,RNNs出現(xiàn)的目的是來處理時間序列數(shù)據(jù)。

這個網(wǎng)絡最直觀的印象是什么呢,就是線多。在傳統(tǒng)的神經網(wǎng)絡模型中,是從輸入層到隱含層再到輸出層,層與層之間是全連接的,每層的節(jié)點之間是無連接的。但是這種普通的神經網(wǎng)絡對于很多問題卻沒有辦法。例如,要預測句子的下一個單詞,一般需要用到前面的單詞,因為一個句子中前后單詞并不是獨立的。RNNs之所以稱為循環(huán)神經網(wǎng)路,即一個序列當前的輸出與前面的輸出也有關,網(wǎng)絡會對前面的信息進行記憶并應用于當前輸出的計算中,具體的表現(xiàn)形式為即隱藏層之間的節(jié)點不再無連接而是有連接的,并且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。理論上,RNNs能夠對任何長度的序列數(shù)據(jù)進行處理。但是在實踐中,為了降低復雜性往往假設當前的狀態(tài)只與前面的幾個狀態(tài)相關,下圖便是一個典型的RNNs:

T時刻的輸出是該時刻的輸入和所有歷史共同的結果,這就達到了對時間序列建模的目的。RNN可以看成一個在時間上傳遞的神經網(wǎng)絡,它的深度是時間的長度。對于t時刻來說,它產生的梯度在時間軸上向歷史傳播幾層之后就消失了,根本就無法影響太遙遠的過去。因此,之前說“所有歷史”共同作用只是理想的情況,在實際中,這種影響也就只能維持若干個時間戳。

為了解決時間上的梯度消失,機器學習領域發(fā)展出了長短時記憶單元LSTM,通過門的開關實現(xiàn)時間上記憶功能,并防止梯度消失。

RNN還可以用在生成圖像描述之中,用CNN網(wǎng)絡做識別和分類,用RNN網(wǎng)絡產生描述語句,這就是李飛飛的實驗室所研究的內容。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2541

    文章

    49963

    瀏覽量

    747548
  • 機器學習
    +關注

    關注

    66

    文章

    8306

    瀏覽量

    131848
收藏 人收藏

    評論

    相關推薦

    卷積神經網(wǎng)絡模型發(fā)展及應用

    神經網(wǎng)絡已經廣泛應用于圖像分類、目標檢測、語義分割以及自然語言處理等領域。首先分析了典型卷積神經網(wǎng)絡模型為提高其性能增加網(wǎng)絡深度以及寬度的模型結構,分析了采用注意力機制進一步提升模型性
    發(fā)表于 08-02 10:39

    循環(huán)神經網(wǎng)絡卷積神經網(wǎng)絡注意力文本生成變換器編碼器序列表征

    序列表征循環(huán)神經網(wǎng)絡卷積神經網(wǎng)絡注意力文本生成變換器編碼器自注意力解碼器自注意力殘差的重要性圖像
    的頭像 發(fā)表于 07-19 14:40 ?3165次閱讀
    <b class='flag-5'>循環(huán)</b><b class='flag-5'>神經網(wǎng)絡</b>卷積<b class='flag-5'>神經網(wǎng)絡</b><b class='flag-5'>注意力</b>文本生成變換器編碼器序列表征

    基于異質注意力循環(huán)神經網(wǎng)絡模型

    針對當前大數(shù)據(jù)環(huán)境下文本推薦不精確的問題,對文本數(shù)據(jù)和關系網(wǎng)絡2種異質數(shù)據(jù)進行融合,并引入編碼器-解碼器框架,提岀基于異質注意力循環(huán)神經網(wǎng)絡模型用于短期文夲推薦。使用句子級的分布記憶
    發(fā)表于 03-19 14:50 ?9次下載
    基于異質<b class='flag-5'>注意力</b>的<b class='flag-5'>循環(huán)</b><b class='flag-5'>神經網(wǎng)絡</b>模型

    基于雙向長短期記憶神經網(wǎng)絡的交互注意力模型

    單獨建模的問題,提岀了一種基于雙向長短期記憶神經網(wǎng)絡( BILSTM的交互注意力神經網(wǎng)絡模型( BI-IAN)。該模型通過 BILSTM對目標和上下文分別進行建模,獲得目標和上下文的隱藏表示,提取其中的語義信息。接下來利用交互
    發(fā)表于 03-24 17:18 ?28次下載
    基于雙向長短期記憶<b class='flag-5'>神經網(wǎng)絡</b>的交互<b class='flag-5'>注意力</b>模型

    基于語音、字形和語義的層次注意力神經網(wǎng)絡模型

    神經網(wǎng)絡、雙向門控循環(huán)單元和注意力機制提取 PFSHAN模型的語音、字形和語義特征。在特征融合階段,針對不同單詞對幽默語言學特征的貢獻程度不同,且不同幽默語言學特征和語句之間關聯(lián)程度不同的問題,采用層次
    發(fā)表于 03-26 15:38 ?14次下載
    基于語音、字形和語義的層次<b class='flag-5'>注意力</b><b class='flag-5'>神經網(wǎng)絡</b>模型

    基于循環(huán)卷積注意力模型的文本情感分類方法

    和全局信息。文中針對單標記和多標記情感分類任務,提出一種循環(huán)卷積注意力模型( LSTM-CNN-ATT,LCA)。該模型利用注意力機制融合卷積神經網(wǎng)絡( Convolutional n
    發(fā)表于 04-14 14:39 ?10次下載
    基于<b class='flag-5'>循環(huán)</b>卷積<b class='flag-5'>注意力</b>模型的文本情感分類方法

    基于情感評分的分層注意力網(wǎng)絡框架

    文本中的詞并非都具有相似的情感傾向和強度,較好地編碼上下文并從中提取關鍵信息對于情感分類任務而言非常重要。為此,提出一種基于情感評分的分層注意力網(wǎng)絡框架,以對文本情感進行有效分類。利用雙循環(huán)
    發(fā)表于 05-14 11:02 ?5次下載

    神經網(wǎng)絡算法是用來干什么的 神經網(wǎng)絡的基本原理

    神經網(wǎng)絡一般可以分為以下常用的三大類:CNN(卷積神經網(wǎng)絡)、RNN(循環(huán)神經網(wǎng)絡)、Transformer(注意力機制)。
    的頭像 發(fā)表于 12-12 14:48 ?5169次閱讀

    循環(huán)神經網(wǎng)絡和遞歸神經網(wǎng)絡的區(qū)別

    循環(huán)神經網(wǎng)絡(Recurrent Neural Network,簡稱RNN)和遞歸神經網(wǎng)絡(Recursive Neural Network,簡稱RvNN)是深度學習中兩種重要的神經網(wǎng)絡
    的頭像 發(fā)表于 07-04 14:19 ?426次閱讀

    循環(huán)神經網(wǎng)絡和卷積神經網(wǎng)絡的區(qū)別

    循環(huán)神經網(wǎng)絡(Recurrent Neural Network,RNN)和卷積神經網(wǎng)絡(Convolutional Neural Network,CNN)是深度學習領域中兩種非常重要的神經網(wǎng)絡
    的頭像 發(fā)表于 07-04 14:24 ?516次閱讀

    循環(huán)神經網(wǎng)絡的基本原理是什么

    結構具有循環(huán),能夠將前一個時間步的信息傳遞到下一個時間步,從而實現(xiàn)對序列數(shù)據(jù)的建模。本文將介紹循環(huán)神經網(wǎng)絡的基本原理。 RNN的基本結構 1.1
    的頭像 發(fā)表于 07-04 14:26 ?440次閱讀

    循環(huán)神經網(wǎng)絡的基本概念

    循環(huán)神經網(wǎng)絡(Recurrent Neural Network,簡稱RNN)是一種具有循環(huán)結構的神經網(wǎng)絡,其核心思想是將前一個時間步的輸出作為下一個時間步的輸入,從而
    的頭像 發(fā)表于 07-04 14:31 ?370次閱讀

    循環(huán)神經網(wǎng)絡算法原理及特點

    )相比,RNN在處理序列數(shù)據(jù)時具有明顯的優(yōu)勢。本文將介紹循環(huán)神經網(wǎng)絡的原理、特點及應用。 1. 循環(huán)神經網(wǎng)絡的原理 1.1 基本概念 循環(huán)
    的頭像 發(fā)表于 07-04 14:49 ?308次閱讀

    遞歸神經網(wǎng)絡循環(huán)神經網(wǎng)絡

    遞歸神經網(wǎng)絡(Recurrent Neural Network,簡稱RNN)和循環(huán)神經網(wǎng)絡(Recurrent Neural Network,簡稱RNN)實際上是同一個概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?449次閱讀

    rnn是遞歸神經網(wǎng)絡還是循環(huán)神經網(wǎng)絡

    RNN(Recurrent Neural Network)是循環(huán)神經網(wǎng)絡,而非遞歸神經網(wǎng)絡循環(huán)神經網(wǎng)絡是一種具有時間序列特性的
    的頭像 發(fā)表于 07-05 09:52 ?385次閱讀