0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Linear Resistance Meter,線性刻度歐姆表

454398 ? 2018-09-20 19:20 ? 次閱讀

Linear Resistance Meter,線性刻度歐姆表

關(guān)鍵字:Linear Resistance Meter

Most analogue multimeters are capable of measuring resistance over quite a wide range of values, but are rather inconvenient in use due to the reverse reading scale which is also non-linear. This can also give poor accuracy due to cramping of the scale that occurs at the high value end of each range. This resistance meter has 5 ranges and it has a forward reading linear scale on each range.The full-scale values of the 5 ranges are 1K, 10K, 100K, 1M &10M respectively and the unit is therefore capable of reasonably accurate measurements from a few tens of ohms to ten Megohms.
Circuit diagram

The Circuit
Most linear scale resistance meters including the present design, work on the principle that if a resistance is fed from a constant current source the voltage developed across that resistance is proportional to its value. For example, if a 1K resistor is fed from a 1 mA current source from Ohm’s Law it can be calculated that 1 volt will be developed across the resistor (1000 Ohms divided by 0.001 amps = 1 volt). Using the same current and resistance values of 100 ohms & 10K gives voltages of 0.1volts (100 ohms / 0.001amps = 0.1volts) & 10 volts (10000 ohms / 0.001amps = 10 volts).
Thus the voltage developed across the resistor is indeed proportional to its value, and a voltmeter used to measure this voltage can in fact be calibrated in resistance, and will have the desired forward reading linear scale. One slight complication is that the voltmeter must not take a significant current or this will alter the current fed to the test resistor and impair linearity. It is therefore necessary to use a high impedance voltmeter circuit.
The full circuit diagram of the Linear Resistance Meter is given in Figure 1. The constant current generator is based on IC1a and Q1. R1, D1 and D2 form a simple form a simple voltage regulator circuit, which feeds a potential of just over 1.2 volts to the non-inverting input of IC1a. There is 100% negative feedback from the emitter of Q1 to the inverting input of IC1a so that Q1’s emitter is stabilised at the same potential as IC1a’s non-inverting input. In other words it is stabilised a little over 1.2 volts below the positive supply rail potential. S3a gives 5 switched emitter resistances for Q1, and therefore 5 switched emitter currents. S3b provides 5 reference resistors across T1 & T2 via S2 to set full-scale deflection on each range using VR1.
As the emitter and collector currents of a high gain transistor such as a BC179 device used in the Q1 are virtually identical, this also gives 5 switched collector currents. By having 5 output currents, and the current reduced by a factor of 10 each time S3a is moved one step in a clockwise direction, the 5 required measuring ranges are obtained. R2 to R6 must be close tolerance types to ensure good accuracy on all ranges. The high impedance voltmeter section uses IC1b with 100% negative feedback from the output to the inverting input so that there is unity voltage gain from the non-inverting input to the output. The output of IC1b drives a simple voltmeter circuit using VR1 and M1, and the former is adjusted to give the correct full-scale resistance values.
The CA3240E device used for IC1 is a dual op-amp having a MOS input stage and a class A output stage. These enable the device to operate with the inputs and outputs right down to the negative supply rail voltage. This is a very helpful feature in many circuits, including the present one as it enables a single supply rail to be used where a dual balanced supply would otherwise be needed. In many applications the negative supply is needed simply in order to permit the output of the op-amp to reach the 0volt rail. In applications of this type the CA3240E device normally enables the negative supply to be dispensed with.
As the CA3240E has a MOS input stage for each section the input impedance is very high (about 1.5 million Megohms!) and obviously no significant input current flows into the device. This, together with the high quality of the constant current source, and the practically non-existent distortion through IC1b due to the high feedback level gives this circuit excellent linearity.
With no resistor connected across T1 & T2 M1 will be taken beyond full-scale deflection and overloaded by about 100 or 200%. This is unlikely to damage the meter, but to be on the safe side a push-to-test on/off switch (S1) is used. Thus the power is only applied to the circuit when a test resistor is connected to the unit, and prolonged meter overloads are thus avoided.
A small (PP3 size) 9 volt battery is a suitable power source for this project which has a current consumption of around 5mA and does not require a stabilised supply.
Photos showing inside and outside of the completed Linear Resistance Meter.
Author: Dave Elliott
Email: portagepal@tiscali.co.uk
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    萬用測(cè)電阻黑表筆接哪個(gè)極

    萬用測(cè)電阻時(shí),黑表筆接的極性與萬用的類型(指針式或數(shù)字式)有關(guān)。 指針式萬用 對(duì)于指針式萬用,在測(cè)量電阻時(shí),黑表筆連接的是歐姆表內(nèi)部
    的頭像 發(fā)表于 08-20 10:27 ?413次閱讀

    歐姆表倍率與內(nèi)阻的關(guān)系

    歐姆表是一種用于測(cè)量電阻的便攜式電子儀器,廣泛應(yīng)用于電子、電氣和通信領(lǐng)域。它的原理基于歐姆定律,即電壓與電流成正比,而電阻則是電壓與電流的比值。在實(shí)際應(yīng)用中,歐姆表的倍率是一個(gè)關(guān)鍵參數(shù),它直接影響
    的頭像 發(fā)表于 07-26 11:30 ?733次閱讀

    什么定律體現(xiàn)了線性電路元件上電壓 歐姆定律在實(shí)際電路中的應(yīng)用

    線性電路元件上的電壓與電流之間的關(guān)系遵循歐姆定律。 1. 歐姆定律的基本概念 歐姆定律是描述電阻、電壓和電流之間關(guān)系的定律。在最簡(jiǎn)單的形式中,歐姆
    的頭像 發(fā)表于 07-17 11:22 ?289次閱讀

    線性電路歐姆定律適用嗎

    線性電路是指電路元件的電壓與電流之間的關(guān)系不是線性的,即不滿足歐姆定律的電路。歐姆定律是描述線性電路中電壓、電流和電阻之間關(guān)系的定律,其表
    的頭像 發(fā)表于 07-09 11:12 ?277次閱讀

    的定義、原理和應(yīng)用領(lǐng)域

    在電子測(cè)量與測(cè)試領(lǐng)域,源(Source Measure Unit,簡(jiǎn)稱SMU)是一種重要的測(cè)試工具,它集合了電壓源、電流源、電壓、電流、歐姆表及電子負(fù)載的功能于一身,為工程師們提
    的頭像 發(fā)表于 05-15 16:09 ?949次閱讀

    毫歐的使用方法和注意事項(xiàng)

    毫歐,也稱為微歐姆表或低電阻測(cè)試儀,是一種用于測(cè)量非常低電阻值的電子測(cè)試設(shè)備。
    的頭像 發(fā)表于 05-14 18:26 ?2075次閱讀

    歐姆表的使用步驟和注意事項(xiàng)

    歐姆表是一種用于測(cè)量電阻的電子測(cè)試儀器,廣泛應(yīng)用于電氣和電子領(lǐng)域的電阻測(cè)量。正確使用歐姆表對(duì)于獲得準(zhǔn)確的測(cè)量結(jié)果至關(guān)重要。
    的頭像 發(fā)表于 05-13 17:38 ?2410次閱讀

    歐姆表機(jī)械調(diào)零和歐姆調(diào)零是什么意思

    歐姆表是一種用于測(cè)量電阻的電子測(cè)試儀器,其測(cè)量原理基于歐姆定律。在使用歐姆表測(cè)量電阻之前,通常需要進(jìn)行兩種調(diào)零操作:機(jī)械調(diào)零和歐姆調(diào)零。這
    的頭像 發(fā)表于 05-13 17:34 ?4898次閱讀

    歐姆表是怎么調(diào)零的?歐姆表調(diào)零步驟?

    歐姆表是一種用于測(cè)量電阻的電子儀器,它基于歐姆定律工作。在使用歐姆表測(cè)量電阻之前,必須進(jìn)行調(diào)零操作以確保測(cè)量的準(zhǔn)確性。
    的頭像 發(fā)表于 05-13 17:28 ?3214次閱讀

    指針式萬用的使用方法

    在使用指針式萬用之前,需要觀察萬用的指針是否與零刻度線對(duì)齊和重合。如果不重合,就需要進(jìn)行調(diào)零操作,否則會(huì)影響讀數(shù),使測(cè)量結(jié)果不準(zhǔn)確。調(diào)零操作包括機(jī)械調(diào)零和歐姆調(diào)零。機(jī)械調(diào)零是通過調(diào)
    的頭像 發(fā)表于 05-09 18:23 ?1112次閱讀

    歐姆定律公式的適用范圍

    ,其中V表示電壓,I表示電流,R表示電阻。這個(gè)簡(jiǎn)單的方程提供了電子學(xué)和電路分析的基本框架。然而,歐姆定律并不是應(yīng)用于所有電路和組件的法則,它有其適用范圍和限制。 首先,歐姆定律適用于線性電阻。
    的頭像 發(fā)表于 01-16 15:50 ?2233次閱讀

    線性元件滿足歐姆定律嗎

    線性元件不滿足歐姆定律。 歐姆定律是指在恒溫條件下,電阻的電流與電壓成正比,即V=IR。這意味著電阻的電阻值是固定的,無論電壓大小如何變化,電流始終保持一定比例關(guān)系。 然而,非線性
    的頭像 發(fā)表于 01-10 14:00 ?1973次閱讀

    歐姆定律的適用條件是什么

    = I × R,其中V為電壓、I為電流、R為電阻。 然而,歐姆定律并不是適用于所有電路和電器的。在某些情況下,歐姆定律可能并不適用或只能作為近似使用。以下是歐姆定律的適用條件的詳細(xì)說明:
    的頭像 發(fā)表于 01-10 13:57 ?3863次閱讀

    歐姆定律適用于非線性電路嗎

    歐姆定律(Ohm's law)是描述電流、電壓和電阻之間關(guān)系的基本電學(xué)定律。它是針對(duì)線性電路的一項(xiàng)基本規(guī)律,但在非線性電路中,歐姆定律的適用性存在一定的限制。 在
    的頭像 發(fā)表于 01-10 13:42 ?2560次閱讀

    電阻怎么測(cè)接地電阻,需要避免的操作誤區(qū)有哪些?

    電阻是一種用于測(cè)量電阻值的儀器。它也被稱為歐姆表或電阻計(jì)。電阻通常是一種便攜式儀器,由一個(gè)測(cè)量電路和一個(gè)指針或數(shù)字顯示屏組成。
    的頭像 發(fā)表于 12-14 10:33 ?1007次閱讀