前文推送:
數(shù)學(xué)推導(dǎo)+純Python實(shí)現(xiàn)機(jī)器學(xué)習(xí)算法
1:線性回歸
自本系列第一講推出以來(lái),得到了不少同學(xué)的反響和贊成,也有同學(xué)留言說(shuō)最好能把數(shù)學(xué)推導(dǎo)部分寫的詳細(xì)點(diǎn),筆者只能說(shuō)盡力,因?yàn)榇蚬綄?shí)在是太浪費(fèi)時(shí)間了。。本節(jié)要和大家一起學(xué)習(xí)的是邏輯(logistic)回歸模型,繼續(xù)按照手推公式+純 Python 的寫作套路。
邏輯回歸本質(zhì)上跟邏輯這個(gè)詞不是很搭邊,叫這個(gè)名字完全是直譯過(guò)來(lái)形成的。那該怎么叫呢?其實(shí)邏輯回歸本名應(yīng)該叫對(duì)數(shù)幾率回歸,是線性回歸的一種推廣,所以我們?cè)诮y(tǒng)計(jì)學(xué)上也稱之為廣義線性模型。眾多周知的是,線性回歸針對(duì)的是標(biāo)簽為連續(xù)值的機(jī)器學(xué)習(xí)任務(wù),那如果我們想用線性模型來(lái)做分類任何可行嗎?答案當(dāng)然是肯定的。
sigmoid 函數(shù)
相較于線性回歸的因變量 y 為連續(xù)值,邏輯回歸的因變量則是一個(gè) 0/1 的二分類值,這就需要我們建立一種映射將原先的實(shí)值轉(zhuǎn)化為 0/1 值。這時(shí)候就要請(qǐng)出我們熟悉的 sigmoid 函數(shù)了:
其函數(shù)圖形如下:
除了長(zhǎng)的很優(yōu)雅之外,sigmoid 函數(shù)還有一個(gè)很好的特性就是其求導(dǎo)計(jì)算等于下式,這給我們后續(xù)求交叉熵?fù)p失的梯度時(shí)提供了很大便利。
邏輯回歸模型的數(shù)學(xué)推導(dǎo)
由 sigmoid 函數(shù)可知邏輯回歸模型的基本形式為:
稍微對(duì)上式做一下轉(zhuǎn)換:
下面將 y 視為類后驗(yàn)概率 p(y = 1 | x),則上式可以寫為:
則有:
將上式進(jìn)行簡(jiǎn)單綜合,可寫成如下形式:
寫成對(duì)數(shù)形式就是我們熟知的交叉熵?fù)p失函數(shù)了,這也是交叉熵?fù)p失的推導(dǎo)由來(lái):
最優(yōu)化上式子本質(zhì)上就是我們統(tǒng)計(jì)上所說(shuō)的求其極大似然估計(jì),可基于上式分別關(guān)于 W 和b 求其偏導(dǎo)可得:
基于 W 和 b 的梯度進(jìn)行權(quán)值更新即可求導(dǎo)參數(shù)的最優(yōu)值,使得損失函數(shù)最小化,也即求得參數(shù)的極大似然估計(jì),殊途同歸啊。
邏輯回歸的 Python 實(shí)現(xiàn)
跟上一講寫線性模型一樣,在實(shí)際動(dòng)手寫之前我們需要理清楚思路。要寫一個(gè)完整的邏輯回歸模型我們需要:sigmoid函數(shù)、模型主體、參數(shù)初始化、基于梯度下降的參數(shù)更新訓(xùn)練、數(shù)據(jù)測(cè)試與可視化展示。
先定義一個(gè) sigmoid 函數(shù):
import numpy as npdef sigmoid(x): z = 1 / (1 + np.exp(-x)) return z
定義模型參數(shù)初始化函數(shù):
def initialize_params(dims): W = np.zeros((dims, 1)) b = 0 return W, b
定義邏輯回歸模型主體部分,包括模型計(jì)算公式、損失函數(shù)和參數(shù)的梯度公式:
def logistic(X, y, W, b): num_train = X.shape[0] num_feature = X.shape[1] a = sigmoid(np.dot(X, W) + b) cost = -1/num_train * np.sum(y*np.log(a) + (1-y)*np.log(1-a)) dW = np.dot(X.T, (a-y))/num_train db = np.sum(a-y)/num_train cost = np.squeeze(cost) return a, cost, dW, db
定義基于梯度下降的參數(shù)更新訓(xùn)練過(guò)程:
def logistic_train(X, y, learning_rate, epochs): # 初始化模型參數(shù) W, b = initialize_params(X.shape[1]) cost_list = [] # 迭代訓(xùn)練 for i in range(epochs): # 計(jì)算當(dāng)前次的模型計(jì)算結(jié)果、損失和參數(shù)梯度 a, cost, dW, db = logistic(X, y, W, b) # 參數(shù)更新 W = W -learning_rate * dW b = b -learning_rate * db # 記錄損失 if i % 100 == 0: cost_list.append(cost) # 打印訓(xùn)練過(guò)程中的損失 if i % 100 == 0: print('epoch %d cost %f' % (i, cost)) # 保存參數(shù) params = { 'W': W, 'b': b } # 保存梯度 grads = { 'dW': dW, 'db': db } return cost_list, params, grads
定義對(duì)測(cè)試數(shù)據(jù)的預(yù)測(cè)函數(shù):
def predict(X, params): y_prediction = sigmoid(np.dot(X, params['W']) + params['b']) for i in range(len(y_prediction)): if y_prediction[i] > 0.5: y_prediction[i] = 1 else: y_prediction[i] = 0 return y_prediction
使用 sklearn 生成模擬的二分類數(shù)據(jù)集進(jìn)行模型訓(xùn)練和測(cè)試:
import matplotlib.pyplot as pltfrom sklearn.datasets.samples_generator import make_classification X,labels=make_classification(n_samples=100, n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=2) rng=np.random.RandomState(2) X+=2*rng.uniform(size=X.shape) unique_lables=set(labels) colors=plt.cm.Spectral(np.linspace(0, 1, len(unique_lables)))for k, col in zip(unique_lables, colors): x_k=X[labels==k] plt.plot(x_k[:, 0], x_k[:, 1], 'o', markerfacecolor=col, markeredgecolor="k", markersize=14) plt.title('data by make_classification()') plt.show()
數(shù)據(jù)分布展示如下:
對(duì)數(shù)據(jù)進(jìn)行簡(jiǎn)單的訓(xùn)練集與測(cè)試集的劃分:
offset = int(X.shape[0] * 0.9) X_train, y_train = X[:offset], labels[:offset] X_test, y_test = X[offset:], labels[offset:] y_train = y_train.reshape((-1,1)) y_test = y_test.reshape((-1,1)) print('X_train=', X_train.shape) print('X_test=', X_test.shape) print('y_train=', y_train.shape) print('y_test=', y_test.shape)
對(duì)訓(xùn)練集進(jìn)行訓(xùn)練:
cost_list, params, grads = lr_train(X_train, y_train, 0.01, 1000)
迭代過(guò)程如下:
對(duì)測(cè)試集數(shù)據(jù)進(jìn)行預(yù)測(cè):
y_prediction = predict(X_test, params) print(y_prediction)
預(yù)測(cè)結(jié)果如下:
定義一個(gè)分類準(zhǔn)確率函數(shù)對(duì)訓(xùn)練集和測(cè)試集的準(zhǔn)確率進(jìn)行評(píng)估:
def accuracy(y_test, y_pred): correct_count = 0 for i in range(len(y_test)): for j in range(len(y_pred)): if y_test[i] == y_pred[j] and i == j: correct_count +=1 accuracy_score = correct_count / len(y_test) return accuracy_score # 打印訓(xùn)練準(zhǔn)確率accuracy_score_train = accuracy(y_train, y_train_pred) print(accuracy_score_train)
查看測(cè)試集準(zhǔn)確率:
accuracy_score_test = accuracy(y_test, y_prediction) print(accuracy_score_test)
沒(méi)有進(jìn)行交叉驗(yàn)證,測(cè)試集準(zhǔn)確率存在一定的偶然性哈。
最后我們定義個(gè)繪制模型決策邊界的圖形函數(shù)對(duì)訓(xùn)練結(jié)果進(jìn)行可視化展示:
def plot_logistic(X_train, y_train, params): n = X_train.shape[0] xcord1 = [] ycord1 = [] xcord2 = [] ycord2 = [] for i in range(n): if y_train[i] == 1: xcord1.append(X_train[i][0]) ycord1.append(X_train[i][1]) else: xcord2.append(X_train[i][0]) ycord2.append(X_train[i][1]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1,s=32, c='red') ax.scatter(xcord2, ycord2, s=32, c='green') x = np.arange(-1.5, 3, 0.1) y = (-params['b'] - params['W'][0] * x) / params['W'][1] ax.plot(x, y) plt.xlabel('X1') plt.ylabel('X2') plt.show() plot_logistic(X_train, y_train, params)
組件封裝成邏輯回歸類
將以上實(shí)現(xiàn)過(guò)程使用一個(gè) python 類進(jìn)行封裝:
import numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets.samples_generator import make_classificationclass logistic_regression(): def __init__(self): pass def sigmoid(self, x): z = 1 / (1 + np.exp(-x)) return z def initialize_params(self, dims): W = np.zeros((dims, 1)) b = 0 return W, b def logistic(self, X, y, W, b): num_train = X.shape[0] num_feature = X.shape[1] a = self.sigmoid(np.dot(X, W) + b) cost = -1 / num_train * np.sum(y * np.log(a) + (1 - y) * np.log(1 - a)) dW = np.dot(X.T, (a - y)) / num_train db = np.sum(a - y) / num_train cost = np.squeeze(cost) return a, cost, dW, db def logistic_train(self, X, y, learning_rate, epochs): W, b = self.initialize_params(X.shape[1]) cost_list = [] for i in range(epochs): a, cost, dW, db = self.logistic(X, y, W, b) W = W - learning_rate * dW b = b - learning_rate * db if i % 100 == 0: cost_list.append(cost) if i % 100 == 0: print('epoch %d cost %f' % (i, cost)) params = { 'W': W, 'b': b } grads = { 'dW': dW, 'db': db } return cost_list, params, grads def predict(self, X, params): y_prediction = self.sigmoid(np.dot(X, params['W']) + params['b']) for i in range(len(y_prediction)): if y_prediction[i] > 0.5: y_prediction[i] = 1 else: y_prediction[i] = 0 return y_prediction def accuracy(self, y_test, y_pred): correct_count = 0 for i in range(len(y_test)): for j in range(len(y_pred)): if y_test[i] == y_pred[j] and i == j: correct_count += 1 accuracy_score = correct_count / len(y_test) return accuracy_score def create_data(self): X, labels = make_classification(n_samples=100, n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=2) labels = labels.reshape((-1, 1)) offset = int(X.shape[0] * 0.9) X_train, y_train = X[:offset], labels[:offset] X_test, y_test = X[offset:], labels[offset:] return X_train, y_train, X_test, y_test def plot_logistic(self, X_train, y_train, params): n = X_train.shape[0] xcord1 = [] ycord1 = [] xcord2 = [] ycord2 = [] for i in range(n): if y_train[i] == 1: xcord1.append(X_train[i][0]) ycord1.append(X_train[i][1]) else: xcord2.append(X_train[i][0]) ycord2.append(X_train[i][1]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=32, c='red') ax.scatter(xcord2, ycord2, s=32, c='green') x = np.arange(-1.5, 3, 0.1) y = (-params['b'] - params['W'][0] * x) / params['W'][1] ax.plot(x, y) plt.xlabel('X1') plt.ylabel('X2') plt.show() if __name__ == "__main__": model = logistic_regression() X_train, y_train, X_test, y_test = model.create_data() print(X_train.shape, y_train.shape, X_test.shape, y_test.shape) cost_list, params, grads = model.logistic_train(X_train, y_train, 0.01, 1000) print(params) y_train_pred = model.predict(X_train, params) accuracy_score_train = model.accuracy(y_train, y_train_pred) print('train accuracy is:', accuracy_score_train) y_test_pred = model.predict(X_test, params) accuracy_score_test = model.accuracy(y_test, y_test_pred) print('test accuracy is:', accuracy_score_test) model.plot_logistic(X_train, y_train, params)
好了,關(guān)于邏輯回歸的內(nèi)容,筆者就介紹到這,至于如何在實(shí)戰(zhàn)中檢驗(yàn)邏輯回歸的分類效果,還需各位親自試一試。多說(shuō)一句,邏輯回歸模型與感知機(jī)、神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)有著千絲萬(wàn)縷的關(guān)系,作為基礎(chǔ)的機(jī)器學(xué)習(xí)模型,希望大家能夠牢固掌握其數(shù)學(xué)推導(dǎo)和手動(dòng)實(shí)現(xiàn)方式,在此基礎(chǔ)上再去調(diào)用 sklearn 中的 LogisticRegression 模塊,必能必能裨補(bǔ)闕漏,有所廣益。
-
函數(shù)
+關(guān)注
關(guān)注
3文章
4281瀏覽量
62325 -
機(jī)器學(xué)習(xí)
+關(guān)注
關(guān)注
66文章
8350瀏覽量
132315 -
python
+關(guān)注
關(guān)注
55文章
4767瀏覽量
84376
原文標(biāo)題:數(shù)學(xué)推導(dǎo)+純Python實(shí)現(xiàn)機(jī)器學(xué)習(xí)算法2:邏輯回歸
文章出處:【微信號(hào):AI_shequ,微信公眾號(hào):人工智能愛(ài)好者社區(qū)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論