0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深入剖析4線SPI器件

電機(jī)控制設(shè)計(jì)加油站 ? 來源:未知 ? 作者:胡薇 ? 2018-10-30 09:04 ? 次閱讀

串行外設(shè)接口 (SPI) 是微控制器和外圍 IC(如傳感器、ADC、DAC、 移位寄存器、SRAM等)之間使用最廣泛的接口之一。

SPI 是一種同步、全雙工、主從式接口。來自主機(jī)或從機(jī)的數(shù)據(jù)在時鐘上升沿或下降沿同步。主機(jī)和從機(jī)可以同時傳輸數(shù)據(jù)。SPI 接口可以是3線式或4線式。本文重點(diǎn)介紹常用的4線SPI接口。

接 口

* 4 線 SPI 器件有四個信號:* 時鐘(SPICLK,SCLK)* 片選(CS)主機(jī)輸出* 從機(jī)輸入(MOSI)主機(jī)輸入* 從機(jī)輸出(MISO)

產(chǎn)生時鐘信號的器件稱為主機(jī)。主機(jī)和從機(jī)之間傳輸?shù)臄?shù)據(jù)與主機(jī)產(chǎn)生的時鐘同步。同I2C接口相比,SPI器件支持更高的時鐘頻率。用戶應(yīng)查閱產(chǎn)品數(shù)據(jù)手冊以了解SPI接口的時鐘頻率規(guī)格。

SPI接口只能有一個主機(jī),但可以有一個或多個從機(jī)。圖1顯示了主機(jī)和從機(jī)之間的SPI連接。

圖1. 含主機(jī)和從機(jī)的SPI配置

來自主機(jī)的片選信號用于選擇從機(jī)。這通常是一個低電平有效信號,拉高時從機(jī)與SPI總線斷開連接。當(dāng)使用多個從機(jī)時,主機(jī)需要為每個從機(jī)提供單獨(dú)的片選信號。本文中的片選信號始終是低電平有效信號。

MOSI和MISO是數(shù)據(jù)線。MOSI將數(shù)據(jù)從主機(jī)發(fā)送到從機(jī),MISO將數(shù)據(jù)從從機(jī)發(fā)送到主機(jī)。

數(shù)據(jù)傳輸

要開始SPI通信,主機(jī)必須發(fā)送時鐘信號,并通過使能CS信號選擇從機(jī)。片選通常是低電平有效信號。因此,主機(jī)必須在該信號上發(fā)送邏輯0以選擇從機(jī)。SPI是全雙工接口,主機(jī)和從機(jī)可以分別通過MOSI和MISO線路同時發(fā)送數(shù)據(jù)。在SPI通信期間,數(shù)據(jù)的發(fā)送(串行移出到MOSI/SDO總線上)和接收(采樣或讀入總線(MISO/SDI)上的數(shù)據(jù))同時進(jìn)行。串行時鐘沿同步數(shù)據(jù)的移位和采樣。SPI接口允許用戶靈活選擇時鐘的上升沿或下降沿來采樣和/或移位數(shù)據(jù)。欲確定使用SPI接口傳輸?shù)臄?shù)據(jù)位數(shù),請參閱器件數(shù)據(jù)手冊。

時鐘極性和時鐘相位

在SPI中,主機(jī)可以選擇時鐘極性和時鐘相位。在空閑狀態(tài)期間,CPOL位設(shè)置時鐘信號的極性??臻e狀態(tài)是指傳輸開始時CS為高電平且在向低電平轉(zhuǎn)變的期間,以及傳輸結(jié)束時CS為低電平且在向高電平轉(zhuǎn)變的期間。CPHA位選擇時鐘相位。根據(jù)CPHA位的狀態(tài),使用時鐘上升沿或下降沿來采樣和/或移位數(shù)據(jù)。主機(jī)必須根據(jù)從機(jī)的要求選擇時鐘極性和時鐘相位。根據(jù)CPOL和CPHA位的選擇,有四種SPI模式可用。表1顯示了這4種SPI模式。

表1.通過CPOL和CPHA選擇SPI模式

圖2至圖5顯示了四種SPI模式下的通信示例。在這些示例中,數(shù)據(jù)顯示在MOSI和MISO線上。傳輸?shù)拈_始和結(jié)束用綠色虛線表示,采樣邊沿用橙色虛線表示,移位邊沿用藍(lán)色虛線表示。請注意,這些圖形僅供參考。要成功進(jìn)行SPI通信,用戶須參閱產(chǎn)品數(shù)據(jù)手冊并確保滿足器件的時序規(guī)格。

圖2. SPI模式0,CPOL = 0,CPHA = 0:CLK空閑狀態(tài) = 低電平,數(shù)據(jù)在上升沿采樣,并在下降沿移出

圖3給出了SPI模式1的時序圖。在此模式下,時鐘極性為0,表示時鐘信號的空閑狀態(tài)為低電平。此模式下的時鐘相位為1,表示數(shù)據(jù)在下降沿采樣(由橙色虛線顯示),并且數(shù)據(jù)在時鐘信號的上升沿移出(由藍(lán)色虛線顯示)。

圖3. SPI模式1,CPOL = 0,CPHA = 1:CLK空閑狀態(tài) = 低電平,數(shù)據(jù)在下降沿采樣,并在上升沿移出

圖4. SPI模式2,CPOL = 1,CPHA = 1:CLK空閑狀態(tài) = 高電平,數(shù)據(jù)在下降沿采樣,并在上升沿移出

圖4給出了SPI模式2的時序圖。在此模式下,時鐘極性為1,表示時鐘信號的空閑狀態(tài)為高電平。此模式下的時鐘相位為1,表示數(shù)據(jù)在下降沿采樣(由橙色虛線顯示),并且數(shù)據(jù)在時鐘信號的上升沿移出(由藍(lán)色虛線顯示)。

圖5. SPI模式3,CPOL = 1,CPHA = 0:CLK空閑狀態(tài) = 高電平,數(shù)據(jù)在上升沿采樣,并在下降沿移出

圖5給出了SPI模式3的時序圖。在此模式下,時鐘極性為1,表示時鐘信號的空閑狀態(tài)為高電平。此模式下的時鐘相位為0,表示數(shù)據(jù)在上升沿采樣(由橙色虛線顯示),并且數(shù)據(jù)在時鐘信號的下降沿移出(由藍(lán)色虛線顯示)。

多從機(jī)配置

多個從機(jī)可與單個SPI主機(jī)一起使用。從機(jī)可以采用常規(guī)模式連接,或采用菊花鏈模式連接。

常規(guī)SPI模式

在常規(guī)模式下,主機(jī)需要為每個從機(jī)提供單獨(dú)的片選信號。一旦主機(jī)使能(拉低)片選信號,MOSI/MISO線上的時鐘和數(shù)據(jù)便可用于所選的從機(jī)。如果使能多個片選信號,則MISO線上的數(shù)據(jù)會被破壞,因?yàn)橹鳈C(jī)無法識別哪個從機(jī)正在傳輸數(shù)據(jù)。

從圖6可以看出,隨著從機(jī)數(shù)量的增加,來自主機(jī)的片選線的數(shù)量也增加。這會快速增加主機(jī)需要提供的輸入和輸出數(shù)量,并限制可以使用的從機(jī)數(shù)量。可以使用其他技術(shù)來增加常規(guī)模式下的從機(jī)數(shù)量,例如使用多路復(fù)用器產(chǎn)生片選信號。

圖6. 多從機(jī)SPI配置

菊花鏈模式

在菊花鏈模式下,所有從機(jī)的片選信號連接在一起,數(shù)據(jù)從一個從機(jī)傳播到下一個從機(jī)。在此配置中,所有從機(jī)同時接收同一SPI時鐘。來自主機(jī)的數(shù)據(jù)直接送到第一個從機(jī),該從機(jī)將數(shù)據(jù)提供給下一個從機(jī),依此類推。

使用該方法時,由于數(shù)據(jù)是從一個從機(jī)傳播到下一個從機(jī),所以傳輸數(shù)據(jù)所需的時鐘周期數(shù)與菊花鏈中的從機(jī)位置成比例。例如在圖7所示的8位系統(tǒng)中,為使第3個從機(jī)能夠獲得數(shù)據(jù),需要24個時鐘脈沖,而常規(guī)SPI模式下只需8個時鐘脈沖。

圖7. 多從機(jī)SPI菊花鏈配置

圖8顯示了時鐘周期和通過菊花鏈的數(shù)據(jù)傳播。并非所有SPI器件都支持菊花鏈模式。請參閱產(chǎn)品數(shù)據(jù)手冊以確認(rèn)菊花鏈?zhǔn)欠窨捎谩?/p>

圖8. 菊花鏈配置:數(shù)據(jù)傳播

ADI 支持 SPI 的模擬開關(guān)與多路轉(zhuǎn)換器

ADI公司最新一代支持SPI的開關(guān)可在不影響精密開關(guān)性能的情況下顯著節(jié)省空間。本文的這一部分將討論一個案例研究,說明支持SPI的開關(guān)或多路復(fù)用器如何能夠大大簡化系統(tǒng)級設(shè)計(jì)并減少所需的GPIO數(shù)量。

ADG1412是一款四通道、單刀單擲(SPST)開關(guān),需要四個GPIO連接到每個開關(guān)的控制輸入。圖9顯示了微控制器和一個ADG1412之間的連接。

圖9. 微控制器GPIO用作開關(guān)的控制信號

隨著電路板上開關(guān)數(shù)量的增加,所需GPIO的數(shù)量也會顯著增加。例如,當(dāng)設(shè)計(jì)一個測試儀器系統(tǒng)時,會使用大量開關(guān)來增加系統(tǒng)中的通道數(shù)。在4×4交叉點(diǎn)矩陣配置中,使用四個ADG1412。此系統(tǒng)需要16個GPIO,限制了標(biāo)準(zhǔn)微控制器中的可用GPIO。圖10顯示了使用微控制器的16個GPIO連接四個ADG1412。

圖10. 在多從機(jī)配置中,所需GPIO的數(shù)量大幅增加

如何減少 GPIO 數(shù)量?

一種方法是使用串行轉(zhuǎn)并行轉(zhuǎn)換器,如圖11所示。該器件輸出的并行信號可連接到開關(guān)控制輸入,器件可通過串行接口SPI配置。此方法的缺點(diǎn)是外加器件會導(dǎo)致物料清單增加。

圖11. 使用串行轉(zhuǎn)并行轉(zhuǎn)換器的多從機(jī)開關(guān)

另一種方法是使用SPI控制的開關(guān)。此方法的優(yōu)點(diǎn)是可減少所需GPIO的數(shù)量,并且還能消除外加串行轉(zhuǎn)并行轉(zhuǎn)換器的開銷。如圖12所示,不需要16個微控制器GPIO,只需要7個微控制器GPIO就可以向4個ADGS1412提供SPI信號。開關(guān)可采用菊花鏈配置,以進(jìn)一步優(yōu)化GPIO數(shù)量。在菊花鏈配置中,無論系統(tǒng)使用多少開關(guān),都只使用主機(jī)(微控制器)的四個GPIO。

圖12. 支持SPI的開關(guān)節(jié)省微控制器GPIO

圖13用于說明目的。ADGS1412數(shù)據(jù)手冊建議在SDO引腳上使用一個上拉電阻。為簡單起見,此示例使用了四個開關(guān)。隨著系統(tǒng)中開關(guān)數(shù)量的增加,電路板簡單和節(jié)省空間的優(yōu)點(diǎn)很重要。

圖13. 菊花鏈配置的SPI開關(guān)可進(jìn)一步優(yōu)化GPIO

在6層電路板上放置8個四通道SPST開關(guān),采用4×8交叉點(diǎn)配置時,ADI 公司支持 SPI 的開關(guān)可節(jié)省20%的總電路板空間。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2545

    文章

    50445

    瀏覽量

    751063
  • adc
    adc
    +關(guān)注

    關(guān)注

    98

    文章

    6391

    瀏覽量

    543774
  • SPI
    SPI
    +關(guān)注

    關(guān)注

    17

    文章

    1688

    瀏覽量

    91212

原文標(biāo)題:一文讀懂 4 線 SPI

文章出處:【微信號:motorcontrol365,微信公眾號:電機(jī)控制設(shè)計(jì)加油站】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    深入最經(jīng)典的電容剖析

    本帖最后由 eehome 于 2013-1-5 10:07 編輯 最深入最經(jīng)典的電容剖析
    發(fā)表于 08-02 21:52

    深入最經(jīng)典的電容剖析

    `最深入最經(jīng)典的電容剖析PCB打樣找華強(qiáng) http://www.hqpcb.com/3 樣板2天出貨`
    發(fā)表于 10-17 10:50

    我通過4SPI取讀取ADXL345卻無法讀取器件ID SPI能夠和自己通訊

    我通過4SPI取讀取ADXL345卻無法讀取器件ID 返回的數(shù)都是0或者0xFF 我自己測試過SPI能夠和自己通訊,有遇到這樣問題的大神不
    發(fā)表于 10-25 15:58

    STM32 單片機(jī)C語言課程4-C語言預(yù)處理深入剖析1

    本帖最后由 張飛電子學(xué)院張角 于 2021-9-13 11:42 編輯 大家上午好!今天為大家講解C語言預(yù)處理深入剖析,請持續(xù)關(guān)注,會持續(xù)進(jìn)行更新!前期回顧:STM32 單片機(jī)C語言課程3-C
    發(fā)表于 09-10 08:31

    STM32 單片機(jī)C語言課程5-C語言預(yù)處理深入剖析2

    大家上午好!今天為大家講解C語言預(yù)處理深入剖析,請持續(xù)關(guān)注,會持續(xù)進(jìn)行更新!前期回顧:STM32 單片機(jī)C語言課程4-C語言預(yù)處理深入剖析1
    發(fā)表于 09-13 11:40

    ITIL 3.0深入剖析

    ITIL 3.0深入剖析 作為全球范圍內(nèi)認(rèn)可的國際標(biāo)準(zhǔn),ISO 20000正引領(lǐng)全球IT服務(wù)管理市場進(jìn)入新時代。與ISO 20000如日中天相比,ITIL這一I
    發(fā)表于 04-13 17:03 ?1188次閱讀

    深入剖析Android消息機(jī)制

    深入剖析Android消息機(jī)制
    發(fā)表于 01-22 21:11 ?11次下載

    深入剖析火花塞

    本文將深入剖析火花塞,詳細(xì)介紹火花塞作用與結(jié)構(gòu),熱值與間隙,電極類型與材料,沿面點(diǎn)火及故障現(xiàn)象分析。
    發(fā)表于 01-17 16:27 ?2286次閱讀

    重點(diǎn)介紹常用的4SPI接口

    SPI 是一種同步、全雙工、主從式接口。來自主機(jī)或從機(jī)的數(shù)據(jù)在時鐘上升沿或下降沿同步。主機(jī)和從機(jī)可以同時傳輸數(shù)據(jù)。SPI 接口可以是3式或4
    的頭像 發(fā)表于 11-13 16:45 ?2w次閱讀
    重點(diǎn)介紹常用的<b class='flag-5'>4</b><b class='flag-5'>線</b><b class='flag-5'>SPI</b>接口

    ADC的4SPI配置時序介紹與分析

    從ads52j90的數(shù)據(jù)手冊我們不難發(fā)現(xiàn),其SPI控制模塊主要包含4根信號SEN,SCLK,SDIN以及SDOUT。TI公司對其產(chǎn)品SPI配置信號的命名方式與通用的
    的頭像 發(fā)表于 09-07 17:09 ?6544次閱讀

    SPI協(xié)議,4制還是3制?資料下載

    電子發(fā)燒友網(wǎng)為你提供SPI協(xié)議,4制還是3制?資料下載的電子資料下載,更有其他相關(guān)的電路圖、源代碼、課件教程、中文資料、英文資料、參考設(shè)計(jì)、用戶指南、解決方案等資料,希望可以幫助到
    發(fā)表于 03-27 08:41 ?12次下載
    <b class='flag-5'>SPI</b>協(xié)議,<b class='flag-5'>4</b><b class='flag-5'>線</b>制還是3<b class='flag-5'>線</b>制?資料下載

    STM32 SPI配置及深入解析

    SPI分析平時會使用硬件SPI,但是只用于應(yīng)用沒有具體深入了解SPI的執(zhí)行流程,此處我采用抓取波形的方式對SPI進(jìn)行了一下
    發(fā)表于 12-22 19:16 ?4次下載
    STM32 <b class='flag-5'>SPI</b>配置及<b class='flag-5'>深入</b>解析

    4SPI接口的簡要介紹

    串行外設(shè)接口(SPI)是微控制器和外設(shè)IC之間使用最廣泛的接口之一,如傳感器、ADC、DAC、移位寄存器、SRAM等。SPI 是一個基于同步、全雙工主從的接口。來自主站或從站的數(shù)據(jù)在時鐘上升沿或下降沿同步。主站和從站都可以同時傳輸數(shù)據(jù)。
    的頭像 發(fā)表于 10-24 14:52 ?1.2w次閱讀
    <b class='flag-5'>4</b><b class='flag-5'>線</b><b class='flag-5'>SPI</b>接口的簡要介紹

    標(biāo)準(zhǔn)4SPI四根有哪些

    ,通常是有一個主設(shè)備和一個或多個從設(shè)備,無應(yīng)答機(jī)制。 標(biāo)準(zhǔn)的 4 SPI,四根如下: ①、CS/SS,Slave Select/Chip Select,片選信號
    的頭像 發(fā)表于 07-27 10:26 ?6674次閱讀
    標(biāo)準(zhǔn)<b class='flag-5'>4</b><b class='flag-5'>線</b><b class='flag-5'>SPI</b>四根<b class='flag-5'>線</b>有哪些

    深入剖析高速SiC MOSFET的開關(guān)行為

    深入剖析高速SiC MOSFET的開關(guān)行為
    的頭像 發(fā)表于 12-04 15:26 ?877次閱讀
    <b class='flag-5'>深入</b><b class='flag-5'>剖析</b>高速SiC MOSFET的開關(guān)行為