0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Imagination發(fā)布最新神經(jīng)網(wǎng)絡(luò)加速器

Dbwd_Imgtec ? 來源:cg ? 2018-12-06 16:09 ? 次閱讀

PowerVR Series3NX提供0.6至10 TOPS的單核性能及超過160 TOPS的多核可擴(kuò)展性,以實(shí)現(xiàn)前所未有的計(jì)算性能和可擴(kuò)展性等級(jí)。

2018年12月4日 - Imagination Technologies宣布推出其面向人工智能AI)應(yīng)用的最新神經(jīng)網(wǎng)絡(luò)加速器(NNA)架構(gòu)PowerVR Series3NX?;趯耀@殊榮的前代產(chǎn)品,新版Series3NX提供了無與倫比的可擴(kuò)展性,使系統(tǒng)級(jí)芯片(SoC)制造商能夠針對(duì)諸如汽車、移動(dòng)設(shè)備、智能視頻監(jiān)控和物聯(lián)網(wǎng)邊緣設(shè)備等一系列嵌入式市場去優(yōu)化計(jì)算能力和性能。

單個(gè)Series3NX內(nèi)核的性能可從0.6到10萬億次操作/秒(TOPS),同時(shí)其多核實(shí)現(xiàn)可擴(kuò)展到160TOPS以上。得益于包括無損權(quán)重壓縮等架構(gòu)性增強(qiáng),Series3NX架構(gòu)的性能可在相同的芯片面積上較上一代產(chǎn)品提升40%,使SoC制造商可在性能效率方面提高近60%,且?guī)捫枨蠼档土?5%。

作為Series3NX架構(gòu)的一部分,Imagination還發(fā)布了PowerVR Series3NX-F(Flexible)半導(dǎo)體知識(shí)產(chǎn)權(quán)(IP)配置,以提供前所未有的功能性和靈活性平衡,同時(shí)還結(jié)合了行業(yè)領(lǐng)先的性能。采用Series3NX-F的客戶可以通過OpenCL框架來實(shí)現(xiàn)差異化并為其產(chǎn)品增加價(jià)值。

“將AI應(yīng)用于邊緣從而去創(chuàng)造更強(qiáng)大、更自主,更易于使用的設(shè)備潛藏著巨大機(jī)遇。”嵌入式視覺聯(lián)盟(Embedded Vision Alliance)創(chuàng)始人Jeff Bier說道?!霸谠S多這類應(yīng)用中,一個(gè)關(guān)鍵的挑戰(zhàn)是實(shí)現(xiàn)處理性能、靈活性、成本和功耗的正確組合。我為Imagination Technologies在開發(fā)創(chuàng)新處理器以滿足這些需求而進(jìn)行的持續(xù)投入點(diǎn)贊?!?/p>

Imagination視覺和人工智能副總裁RussellJames說道:“Series3NX架構(gòu)和Series3NX-F都是不折不扣的創(chuàng)新產(chǎn)品。它們一起帶來了靈活性和可擴(kuò)展性,同時(shí)將性能上限提高了將近一倍。這改變了游戲規(guī)則,可真正推動(dòng)嵌入式設(shè)備去大規(guī)模采用人工智能?!?/p>

為了迎合快速發(fā)展的市場,新的PowerVR工具也進(jìn)行了多項(xiàng)擴(kuò)展,從而能夠最優(yōu)化地去映射新興的網(wǎng)絡(luò)模型、提供靈活性和性能優(yōu)化的理想組合。

通過使用Imagination的專用深度神經(jīng)網(wǎng)絡(luò)(DNN)API,開發(fā)人員可以輕松地針對(duì)Series3NX架構(gòu)以及現(xiàn)有PowerVR GPU編寫人工智能應(yīng)用程序。該API可以在多種SoC配置上工作,以便在現(xiàn)有設(shè)備上輕松地完成原型設(shè)計(jì)。

Imagination于2017年推出了上一代神經(jīng)網(wǎng)絡(luò)加速器產(chǎn)品PowerVR Series2NX。迄今為止,它已經(jīng)授權(quán)給了多家客戶,主要集中在移動(dòng)設(shè)備和汽車市場上。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 嵌入式
    +關(guān)注

    關(guān)注

    5059

    文章

    18973

    瀏覽量

    302015
  • 人工智能
    +關(guān)注

    關(guān)注

    1789

    文章

    46652

    瀏覽量

    237064

原文標(biāo)題:Imagination發(fā)布PowerVR Series3NX神經(jīng)網(wǎng)絡(luò)加速器,為嵌入式人工智能市場帶來多核可擴(kuò)展性

文章出處:【微信號(hào):Imgtec,微信公眾號(hào):Imagination Tech】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    Moku3.3版更新在Moku:Pro平臺(tái)新增了全新的儀器功能【神經(jīng)網(wǎng)絡(luò)】,使用戶能夠在Moku設(shè)備上部署實(shí)時(shí)機(jī)器學(xué)習(xí)算法,進(jìn)行快速、靈活的信號(hào)分析、去噪、傳感調(diào)節(jié)校準(zhǔn)、閉環(huán)反饋等應(yīng)用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?197次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    什么是神經(jīng)網(wǎng)絡(luò)加速器?它有哪些特點(diǎn)?

    神經(jīng)網(wǎng)絡(luò)加速器是一種專門設(shè)計(jì)用于提高神經(jīng)網(wǎng)絡(luò)計(jì)算效率的硬件設(shè)備。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展和廣泛應(yīng)用,神經(jīng)網(wǎng)絡(luò)模型的復(fù)雜度和計(jì)算量急劇增加,對(duì)計(jì)算性能的要求也越來越高。傳統(tǒng)的通用處理
    的頭像 發(fā)表于 07-11 10:40 ?394次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機(jī)器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?1059次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個(gè)基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來發(fā)展等多個(gè)方面,詳細(xì)闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?720次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時(shí)間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?463次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)實(shí)際上是同一個(gè)概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?596次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)領(lǐng)域中兩種非常重要的神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 14:24 ?1009次閱讀

    深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指傳統(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時(shí),我們需要從多個(gè)維度進(jìn)行深入分析。這些維度包括
    的頭像 發(fā)表于 07-04 13:20 ?571次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在深度學(xué)習(xí)領(lǐng)域,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks, RNN)是兩種極其重要
    的頭像 發(fā)表于 07-03 16:12 ?2194次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network,簡稱BP神經(jīng)網(wǎng)絡(luò))是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法來調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,以達(dá)到最小化誤差的
    的頭像 發(fā)表于 07-03 11:00 ?601次閱讀

    bp神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種常見的前饋神經(jīng)網(wǎng)絡(luò),它使用反向傳播算法來訓(xùn)練網(wǎng)絡(luò)。雖然BP神經(jīng)網(wǎng)絡(luò)在某些方面與深度
    的頭像 發(fā)表于 07-03 10:14 ?592次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò),它們?cè)?/div>
    的頭像 發(fā)表于 07-03 10:12 ?883次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?2329次閱讀

    西門子推出Catapult AI NN:重塑神經(jīng)網(wǎng)絡(luò)加速器設(shè)計(jì)的未來

    的需求,西門子數(shù)字化工業(yè)軟件日前推出了一款名為Catapult AI NN的創(chuàng)新軟件,旨在幫助神經(jīng)網(wǎng)絡(luò)加速器在專用集成電路(ASIC)和芯片級(jí)系統(tǒng)(SoC)上實(shí)現(xiàn)更高效的高層次綜合(HLS)。
    的頭像 發(fā)表于 06-19 16:40 ?605次閱讀

    西門子推出Catapult AI NN軟件,賦能神經(jīng)網(wǎng)絡(luò)加速器設(shè)計(jì)

    西門子數(shù)字化工業(yè)軟件近日發(fā)布了Catapult AI NN軟件,這款軟件在神經(jīng)網(wǎng)絡(luò)加速器設(shè)計(jì)領(lǐng)域邁出了重要一步。Catapult AI NN軟件專注于在專用集成電路(ASIC)和芯片級(jí)系統(tǒng)(SoC)上實(shí)現(xiàn)
    的頭像 發(fā)表于 06-19 11:27 ?789次閱讀