0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

盤點(diǎn)史上最全的Python算法集

電子工程師 ? 來(lái)源:cc ? 2019-02-21 10:04 ? 次閱讀

本文是一些機(jī)器人算法(特別是自動(dòng)導(dǎo)航算法)的Python代碼合集。

其主要特點(diǎn)有以下三點(diǎn):選擇了在實(shí)踐中廣泛應(yīng)用的算法;依賴最少;容易閱讀,容易理解每個(gè)算法的基本思想。希望閱讀本文后能對(duì)你有所幫助。

前排友情提示,文章較長(zhǎng),建議收藏后再看。

目錄

環(huán)境需求

怎樣使用

本地化

擴(kuò)展卡爾曼濾波本地化

無(wú)損卡爾曼濾波本地化

粒子濾波本地化

直方圖濾波本地化

映射

高斯網(wǎng)格映射

光線投射網(wǎng)格映射

k均值物體聚類

圓形擬合物體形狀識(shí)別

SLAM

迭代最近點(diǎn)匹配

EKF SLAM

FastSLAM 1.0

FastSLAM 2.0

基于圖的SLAM

路徑規(guī)劃

動(dòng)態(tài)窗口方式

基于網(wǎng)格的搜索

迪杰斯特拉算法

A*算法

勢(shì)場(chǎng)算法

模型預(yù)測(cè)路徑生成

路徑優(yōu)化示例

查找表生成示例

狀態(tài)晶格規(guī)劃

均勻極性采樣(Uniform polar sampling)

偏差極性采樣(Biased polar sampling)

路線采樣(Lane sampling)

隨機(jī)路徑圖(PRM)規(guī)劃

Voronoi路徑圖規(guī)劃

快速搜索隨機(jī)樹(shù)(RRT)

基本RRT

RRT*

基于Dubins路徑的RRT

基于Dubins路徑的RRT*

基于reeds-shepp路徑的RRT*

Informed RRT*

批量Informed RRT*

三次樣條規(guī)劃

B樣條規(guī)劃

貝濟(jì)埃路徑規(guī)劃

五次多項(xiàng)式規(guī)劃

Dubins路徑規(guī)劃

Reeds Shepp路徑規(guī)劃

基于LQR的路徑規(guī)劃

Frenet Frame中的最優(yōu)路徑

路徑跟蹤

純追跡跟蹤

史坦利控制

后輪反饋控制

線性二次regulator(LQR)轉(zhuǎn)向控制

線性二次regulator(LQR)轉(zhuǎn)向和速度控制

項(xiàng)目支持

環(huán)境需求

Python 3.6.x

numpy

scipy

matplotlib

pandas

cvxpy 0.4.x

怎樣使用

安裝必要的庫(kù);

克隆本代碼倉(cāng)庫(kù);

執(zhí)行每個(gè)目錄下的python腳本;

如果你喜歡,則收藏本代碼庫(kù):)

本地化

擴(kuò)展卡爾曼濾波本地化

該算法利用擴(kuò)展卡爾曼濾波器(Extended Kalman Filter, EKF)實(shí)現(xiàn)傳感器混合本地化。

藍(lán)線為真實(shí)路徑,黑線為導(dǎo)航推測(cè)路徑(dead reckoning trajectory),綠點(diǎn)為位置觀測(cè)(如GPS),紅線為EKF估算的路徑。

紅色橢圓為EKF估算的協(xié)方差。

相關(guān)閱讀:

概率機(jī)器人學(xué)

http://www.probabilistic-robotics.org/

無(wú)損卡爾曼濾波本地化

該算法利用無(wú)損卡爾曼濾波器(Unscented Kalman Filter, UKF)實(shí)現(xiàn)傳感器混合本地化。

線和點(diǎn)的含義與EKF模擬的例子相同。

相關(guān)閱讀:

利用無(wú)差別訓(xùn)練過(guò)的無(wú)損卡爾曼濾波進(jìn)行機(jī)器人移動(dòng)本地化

https://www.researchgate.net/publication/267963417_Discriminatively_Trained_Unscented_Kalman_Filter_for_Mobile_Robot_Localization

粒子濾波本地化

該算法利用粒子濾波器(Particle Filter, PF)實(shí)現(xiàn)傳感器混合本地化。

藍(lán)線為真實(shí)路徑,黑線為導(dǎo)航推測(cè)路徑(dead reckoning trajectory),綠點(diǎn)為位置觀測(cè)(如GPS),紅線為PF估算的路徑。

該算法假設(shè)機(jī)器人能夠測(cè)量與地標(biāo)(RFID)之間的距離。

PF本地化會(huì)用到該測(cè)量結(jié)果。

相關(guān)閱讀:

概率機(jī)器人學(xué)

http://www.probabilistic-robotics.org/

直方圖濾波本地化

該算法是利用直方圖濾波器(Histogram filter)實(shí)現(xiàn)二維本地化的例子。

紅十字是實(shí)際位置,黑點(diǎn)是RFID的位置。

藍(lán)色格子是直方圖濾波器的概率位置。

在該模擬中,x,y是未知數(shù),yaw已知。

濾波器整合了速度輸入和從RFID獲得距離觀測(cè)數(shù)據(jù)進(jìn)行本地化。

不需要初始位置。

相關(guān)閱讀:

概率機(jī)器人學(xué)

http://www.probabilistic-robotics.org/

映射

高斯網(wǎng)格映射

本算法是二維高斯網(wǎng)格映射(Gaussian grid mapping)的例子。

光線投射網(wǎng)格映射

本算法是二維光線投射網(wǎng)格映射(Ray casting grid map)的例子。

k均值物體聚類

本算法是使用k均值算法進(jìn)行二維物體聚類的例子。

圓形擬合物體形狀識(shí)別

本算法是使用圓形擬合進(jìn)行物體形狀識(shí)別的例子。

藍(lán)圈是實(shí)際的物體形狀。

紅叉是通過(guò)距離傳感器觀測(cè)到的點(diǎn)。

紅圈是使用圓形擬合估計(jì)的物體形狀。

SLAM

同時(shí)本地化和映射(Simultaneous Localization and Mapping,SLAM)的例子。

迭代最近點(diǎn)匹配

本算法是使用單值解構(gòu)進(jìn)行二維迭代最近點(diǎn)(Iterative Closest Point,ICP)匹配的例子。

它能計(jì)算從一些點(diǎn)到另一些點(diǎn)的旋轉(zhuǎn)矩陣和平移矩陣。

相關(guān)閱讀:

機(jī)器人運(yùn)動(dòng)介紹:迭代最近點(diǎn)算法

https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf

EKF SLAM

這是基于擴(kuò)展卡爾曼濾波的SLAM示例。

藍(lán)線是真實(shí)路徑,黑線是導(dǎo)航推測(cè)路徑,紅線是EKF SLAM估計(jì)的路徑。

綠叉是估計(jì)的地標(biāo)。

相關(guān)閱讀:

概率機(jī)器人學(xué)

http://www.probabilistic-robotics.org/

FastSLAM 1.0

這是用FastSLAM 1.0進(jìn)行基于特征的SLAM的示例。

藍(lán)線是實(shí)際路徑,黑線是導(dǎo)航推測(cè),紅線是FastSLAM的推測(cè)路徑。

紅點(diǎn)是FastSLAM中的粒子。

黑點(diǎn)是地標(biāo),藍(lán)叉是FastLSAM估算的地標(biāo)位置。

相關(guān)閱讀:

概率機(jī)器人學(xué)

http://www.probabilistic-robotics.org/

FastSLAM 2.0

這是用FastSLAM 2.0進(jìn)行基于特征的SLAM的示例。

動(dòng)畫(huà)的含義與FastSLAM 1.0的情況相同。

相關(guān)閱讀:

概率機(jī)器人學(xué)

http://www.probabilistic-robotics.org/

Tim Bailey的SLAM模擬

http://www-personal.acfr.usyd.edu.au/tbailey/software/slam_simulations.htm

基于圖的SLAM

這是基于圖的SLAM的示例。

藍(lán)線是實(shí)際路徑。

黑線是導(dǎo)航推測(cè)路徑。

紅線是基于圖的SLAM估算的路徑。

黑星是地標(biāo),用于生成圖的邊。

相關(guān)閱讀:

基于圖的SLAM入門

http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti10titsmag.pdf

路徑規(guī)劃

動(dòng)態(tài)窗口方式

這是使用動(dòng)態(tài)窗口方式(Dynamic Window Approach)進(jìn)行二維導(dǎo)航的示例代碼。

相關(guān)閱讀:

用動(dòng)態(tài)窗口方式避免碰撞

https://www.ri.cmu.edu/pub_files/pub1/fox_dieter_1997_1/fox_dieter_1997_1.pdf

基于網(wǎng)格的搜索

迪杰斯特拉算法

這是利用迪杰斯特拉(Dijkstra)算法實(shí)現(xiàn)的基于二維網(wǎng)格的最短路徑規(guī)劃。

動(dòng)畫(huà)中青色點(diǎn)為搜索過(guò)的節(jié)點(diǎn)。

A*算法

下面是使用A星算法進(jìn)行基于二維網(wǎng)格的最短路徑規(guī)劃。

動(dòng)畫(huà)中青色點(diǎn)為搜索過(guò)的節(jié)點(diǎn)。

啟發(fā)算法為二維歐幾里得距離。

勢(shì)場(chǎng)算法

下面是使用勢(shì)場(chǎng)算法進(jìn)行基于二維網(wǎng)格的路徑規(guī)劃。

動(dòng)畫(huà)中藍(lán)色的熱區(qū)圖顯示了每個(gè)格子的勢(shì)能。

相關(guān)閱讀:

機(jī)器人運(yùn)動(dòng)規(guī)劃:勢(shì)能函數(shù)

https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf

模型預(yù)測(cè)路徑生成

下面是模型預(yù)測(cè)路徑生成的路徑優(yōu)化示例。

算法用于狀態(tài)晶格規(guī)劃(state lattice planning)。

路徑優(yōu)化示例

查找表生成示例

相關(guān)閱讀:

用于帶輪子的機(jī)器人的最優(yōu)不平整地形路徑生成

http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328

狀態(tài)晶格規(guī)劃

這個(gè)腳本使用了狀態(tài)晶格規(guī)劃(state lattice planning)實(shí)現(xiàn)路徑規(guī)劃。

這段代碼通過(guò)模型預(yù)測(cè)路徑生成來(lái)解決邊界問(wèn)題。

相關(guān)閱讀:

用于帶輪子的機(jī)器人的最優(yōu)不平整地形路徑生成

http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328

用于復(fù)雜環(huán)境下的高性能運(yùn)動(dòng)機(jī)器人導(dǎo)航的可行運(yùn)動(dòng)的狀態(tài)空間采樣

http://www.frc.ri.cmu.edu/~alonzo/pubs/papers/JFR_08_SS_Sampling.pdf

均勻極性采樣(Uniform polar sampling)

偏差極性采樣(Biased polar sampling)

路線采樣(Lane sampling)

隨機(jī)路徑圖(PRM)規(guī)劃

這個(gè)隨機(jī)路徑圖(Probabilistic Road-Map,PRM)規(guī)劃算法在圖搜索上采用了迪杰斯特拉方法。

動(dòng)畫(huà)中的藍(lán)點(diǎn)為采樣點(diǎn)。

青色叉為迪杰斯特拉方法搜索過(guò)的點(diǎn)。

紅線為PRM的最終路徑。

相關(guān)閱讀:

隨機(jī)路徑圖

https://en.wikipedia.org/wiki/Probabilistic_roadmap

Voronoi路徑圖規(guī)劃

這個(gè)Voronoi路徑圖(Probabilistic Road-Map,PRM)規(guī)劃算法在圖搜索上采用了迪杰斯特拉方法。

動(dòng)畫(huà)中的藍(lán)點(diǎn)為Voronoi點(diǎn)。

青色叉為迪杰斯特拉方法搜索過(guò)的點(diǎn)。

紅線為Voronoi路徑圖的最終路徑。

相關(guān)閱讀:

機(jī)器人運(yùn)動(dòng)規(guī)劃

https://www.cs.cmu.edu/~motionplanning/lecture/Chap5-RoadMap-Methods_howie.pdf

快速搜索隨機(jī)樹(shù)(RRT)

基本RRT

這是個(gè)使用快速搜索隨機(jī)樹(shù)(Rapidly-Exploring Random Trees,RRT)的簡(jiǎn)單路徑規(guī)劃代碼。

黑色圓為障礙物,綠線為搜索樹(shù),紅叉為開(kāi)始位置和目標(biāo)位置。

RRT*

這是使用RRT*的路徑規(guī)劃代碼。

黑色圓為障礙物,綠線為搜索樹(shù),紅叉為開(kāi)始位置和目標(biāo)位置。

相關(guān)閱讀:

最優(yōu)運(yùn)動(dòng)規(guī)劃的基于增量采樣的算法

https://arxiv.org/abs/1005.0416

最優(yōu)運(yùn)動(dòng)規(guī)劃的基于采樣的算法

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.5503&rep=rep1&type=pdf

基于Dubins路徑的RRT

為汽車形機(jī)器人提供的使用RRT和dubins路徑規(guī)劃的路徑規(guī)劃算法。

基于Dubins路徑的RRT*

為汽車形機(jī)器人提供的使用RRT*和dubins路徑規(guī)劃的路徑規(guī)劃算法。

基于reeds-shepp路徑的RRT*

為汽車形機(jī)器人提供的使用RRT*和reeds shepp路徑規(guī)劃的路徑規(guī)劃算法。

Informed RRT*

這是使用Informed RRT*的路徑規(guī)劃代碼。

青色橢圓為Informed RRT*的啟發(fā)采樣域。

相關(guān)閱讀:

Informed RRT*:通過(guò)對(duì)可接受的橢球啟發(fā)的直接采樣實(shí)現(xiàn)最優(yōu)的基于采樣的路徑規(guī)劃

https://arxiv.org/pdf/1404.2334.pdf

批量Informed RRT*

這是使用批量Informed RRT*的路徑規(guī)劃代碼。

相關(guān)閱讀:

批量Informed樹(shù)(BIT*):通過(guò)對(duì)隱含隨機(jī)幾何圖形進(jìn)行啟發(fā)式搜索實(shí)現(xiàn)基于采樣的最優(yōu)規(guī)劃

https://arxiv.org/abs/1405.5848

閉合回路RRT*

使用閉合回路RRT*(Closed loop RRT*)實(shí)現(xiàn)的基于車輛模型的路徑規(guī)劃。

這段代碼里,轉(zhuǎn)向控制用的是純追跡算法(pure-pursuit algorithm)。

速度控制采用了PID。

相關(guān)閱讀:

使用閉合回路預(yù)測(cè)在復(fù)雜環(huán)境內(nèi)實(shí)現(xiàn)運(yùn)動(dòng)規(guī)劃

http://acl.mit.edu/papers/KuwataGNC08.pdf)

應(yīng)用于自動(dòng)城市駕駛的實(shí)時(shí)運(yùn)動(dòng)規(guī)劃

http://acl.mit.edu/papers/KuwataTCST09.pdf

[1601.06326]采用閉合回路預(yù)測(cè)實(shí)現(xiàn)最優(yōu)運(yùn)動(dòng)規(guī)劃的基于采樣的算法

https://arxiv.org/abs/1601.06326

LQR-RRT*

這是個(gè)使用LQR-RRT*的路徑規(guī)劃模擬。

LQR局部規(guī)劃采用了雙重積分運(yùn)動(dòng)模型。

相關(guān)閱讀:

LQR-RRT*:使用自動(dòng)推導(dǎo)擴(kuò)展啟發(fā)實(shí)現(xiàn)最優(yōu)基于采樣的運(yùn)動(dòng)規(guī)劃

http://lis.csail.mit.edu/pubs/perez-icra12.pdf

MahanFathi/LQR-RRTstar:LQR-RRT*方法用于單擺相位中的隨機(jī)運(yùn)動(dòng)規(guī)劃

https://github.com/MahanFathi/LQR-RRTstar

三次樣條規(guī)劃

這是段三次路徑規(guī)劃的示例代碼。

這段代碼根據(jù)x-y的路點(diǎn),利用三次樣條生成一段曲率連續(xù)的路徑。

每個(gè)點(diǎn)的指向角度也可以用解析的方式計(jì)算。

B樣條規(guī)劃

這是段使用B樣條曲線進(jìn)行規(guī)劃的例子。

輸入路點(diǎn),它會(huì)利用B樣條生成光滑的路徑。

第一個(gè)和最后一個(gè)路點(diǎn)位于最后的路徑上。

相關(guān)閱讀:

B樣條

https://en.wikipedia.org/wiki/B-spline

Eta^3樣條路徑規(guī)劃

這是使用Eta ^ 3樣條曲線的路徑規(guī)劃。

相關(guān)閱讀:

eta^3-Splines for the Smooth Path Generation of Wheeled Mobile Robots

https://ieeexplore.ieee.org/document/4339545/

貝濟(jì)埃路徑規(guī)劃

貝濟(jì)埃路徑規(guī)劃的示例代碼。

根據(jù)四個(gè)控制點(diǎn)生成貝濟(jì)埃路徑。

改變起點(diǎn)和終點(diǎn)的偏移距離,可以生成不同的貝濟(jì)埃路徑:

相關(guān)閱讀:

根據(jù)貝濟(jì)埃曲線為自動(dòng)駕駛汽車生成曲率連續(xù)的路徑

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.6438&rep=rep1&type=pdf

五次多項(xiàng)式規(guī)劃

利用五次多項(xiàng)式進(jìn)行路徑規(guī)劃。

它能根據(jù)五次多項(xiàng)式計(jì)算二維路徑、速度和加速度。

相關(guān)閱讀:

用于Agv In定位的局部路徑規(guī)劃和運(yùn)動(dòng)控制

http://ieeexplore.ieee.org/document/637936/

Dubins路徑規(guī)劃

Dubins路徑規(guī)劃的示例代碼。

相關(guān)閱讀:

Dubins路徑

https://en.wikipedia.org/wiki/Dubins_path

Reeds Shepp路徑規(guī)劃

Reeds Shepp路徑規(guī)劃的示例代碼。

相關(guān)閱讀:

15.3.2 Reeds-Shepp曲線

http://planning.cs.uiuc.edu/node822.html

用于能前進(jìn)和后退的汽車的最優(yōu)路徑

https://pdfs.semanticscholar.org/932e/c495b1d0018fd59dee12a0bf74434fac7af4.pdf

ghliu/pyReedsShepp:實(shí)現(xiàn)Reeds Shepp曲線

https://github.com/ghliu/pyReedsShepp

基于LQR的路徑規(guī)劃

為雙重積分模型使用基于LQR的路徑規(guī)劃的示例代碼。

Frenet Frame中的最優(yōu)路徑

這段代碼在Frenet Frame中生成最優(yōu)路徑。

青色線為目標(biāo)路徑,黑色叉為障礙物。

紅色線為預(yù)測(cè)的路徑。

相關(guān)閱讀:

Frenet Frame中的動(dòng)態(tài)接到場(chǎng)景中的最優(yōu)路徑生成

https://www.researchgate.net/profile/Moritz_Werling/publication/224156269_Optimal_Trajectory_Generation_for_Dynamic_Street_Scenarios_in_a_Frenet_Frame/links/54f749df0cf210398e9277af.pdf

Frenet Frame中的動(dòng)態(tài)接到場(chǎng)景中的最優(yōu)路徑生成

https://www.youtube.com/watch?v=Cj6tAQe7UCY

路徑跟蹤

姿勢(shì)控制跟蹤

這是姿勢(shì)控制跟蹤的模擬。

相關(guān)閱讀:

Robotics, Vision and Control - Fundamental Algorithms In MATLAB? Second, Completely Revised, Extended And Updated Edition | Peter Corke | Springer

https://www.springer.com/us/book/9783319544120

純追跡跟蹤

使用純追跡(pure pursuit)轉(zhuǎn)向控制和PID速度控制的路徑跟蹤模擬。

紅線為目標(biāo)路線,綠叉為純追跡控制的目標(biāo)點(diǎn),藍(lán)線為跟蹤路線。

相關(guān)閱讀:

城市中的自動(dòng)駕駛汽車的運(yùn)動(dòng)規(guī)劃和控制技術(shù)的調(diào)查

https://arxiv.org/abs/1604.07446

史坦利控制

使用史坦利(Stanley)轉(zhuǎn)向控制和PID速度控制的路徑跟蹤模擬。

相關(guān)閱讀:

史坦利:贏得DARPA大獎(jiǎng)賽的機(jī)器人

http://robots.stanford.edu/papers/thrun.stanley05.pdf

用于自動(dòng)駕駛機(jī)動(dòng)車路徑跟蹤的自動(dòng)轉(zhuǎn)向方法

https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf

后輪反饋控制

利用后輪反饋轉(zhuǎn)向控制和PID速度控制的路徑跟蹤模擬。

相關(guān)閱讀:

城市中的自動(dòng)駕駛汽車的運(yùn)動(dòng)規(guī)劃和控制技術(shù)的調(diào)查

https://arxiv.org/abs/1604.07446

線性二次regulator(LQR)轉(zhuǎn)向控制

使用LQR轉(zhuǎn)向控制和PID速度控制的路徑跟蹤模擬。

相關(guān)閱讀:

ApolloAuto/apollo:開(kāi)源自動(dòng)駕駛平臺(tái)

https://github.com/ApolloAuto/apollo

線性二次regulator(LQR)轉(zhuǎn)向和速度控制

使用LQR轉(zhuǎn)向和速度控制的路徑跟蹤模擬。

相關(guān)閱讀:

完全自動(dòng)駕駛:系統(tǒng)和算法 - IEEE會(huì)議出版物

http://ieeexplore.ieee.org/document/5940562/

模型預(yù)測(cè)速度和轉(zhuǎn)向控制

使用迭代線性模型預(yù)測(cè)轉(zhuǎn)向和速度控制的路徑跟蹤模擬。

這段代碼使用了cxvxpy作為最優(yōu)建模工具。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4587

    瀏覽量

    92505
  • python
    +關(guān)注

    關(guān)注

    55

    文章

    4767

    瀏覽量

    84376

原文標(biāo)題:這可能是史上最全的Python算法集!

文章出處:【微信號(hào):rgznai100,微信公眾號(hào):rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    【飛凌嵌入式OK3576-C開(kāi)發(fā)板體驗(yàn)】RKNN神經(jīng)網(wǎng)絡(luò)算法開(kāi)發(fā)環(huán)境搭建

    的軟件包管理系統(tǒng)和環(huán)境管理系統(tǒng),主要用于安裝、更新、刪除軟件包及其依賴關(guān)系,并允許用戶在不同環(huán)境之間輕松切換。用于后續(xù)安裝Python等插件。在深度神經(jīng)算法中使用的頻率非常高的一款軟件。 3.2
    發(fā)表于 10-10 09:28

    史上最全百吋陣營(yíng)!海信電視新品被曝畫(huà)質(zhì)“炸裂”,或掀市場(chǎng)新風(fēng)暴?

    根據(jù)知名數(shù)碼博主“吳小杰WJie”爆料:月底海信電視將發(fā)布史上最全百吋陣營(yíng),基本涵蓋了所有的價(jià)格區(qū)段,而且還有一款能夠干翻旗艦電視的新品,配置和畫(huà)質(zhì)都非常炸裂,以及這次還有好幾個(gè)首次發(fā)布的新功能,我
    的頭像 發(fā)表于 09-26 18:39 ?1.5w次閱讀
    <b class='flag-5'>史上</b><b class='flag-5'>最全</b>百吋陣營(yíng)!海信電視新品被曝畫(huà)質(zhì)“炸裂”,或掀市場(chǎng)新風(fēng)暴?

    Python建模算法與應(yīng)用

    上成為理想的腳本語(yǔ)言,特別適用于快速的應(yīng)用程序開(kāi)發(fā)。本文將詳細(xì)介紹Python在建模算法中的應(yīng)用,包括常見(jiàn)的建模算法、Python在建模中的優(yōu)勢(shì)、常用庫(kù)以及實(shí)際案例。
    的頭像 發(fā)表于 07-24 10:41 ?408次閱讀

    K折交叉驗(yàn)證算法與訓(xùn)練

    K折交叉驗(yàn)證算法與訓(xùn)練
    的頭像 發(fā)表于 05-15 09:26 ?477次閱讀

    傳感器數(shù)據(jù)融合算法python代碼

    的原理和應(yīng)用,并給出一些使用Python編程語(yǔ)言實(shí)現(xiàn)傳感器數(shù)據(jù)融合算法的示例代碼。 首先,讓我們來(lái)了解傳感器數(shù)據(jù)融合算法的原理。傳感器數(shù)據(jù)融合算法的一個(gè)關(guān)鍵概念是通過(guò)多個(gè)傳感器的數(shù)據(jù)來(lái)
    的頭像 發(fā)表于 12-15 10:28 ?1322次閱讀

    python運(yùn)行環(huán)境的安裝和配置

    Python是一種非常流行的編程語(yǔ)言,廣泛應(yīng)用于科學(xué)計(jì)算、Web開(kāi)發(fā)、人工智能等領(lǐng)域。為了能夠正常運(yùn)行Python程序,我們需要先安裝和配置Python運(yùn)行環(huán)境。本文將為您詳盡介紹Python
    的頭像 發(fā)表于 11-29 16:17 ?1082次閱讀

    python軟件對(duì)電腦配置要求

    Python是一種流行的編程語(yǔ)言,它在許多不同的領(lǐng)域中被廣泛使用,例如網(wǎng)站開(kāi)發(fā)、數(shù)據(jù)科學(xué)和機(jī)器學(xué)習(xí)等。對(duì)于使用Python的開(kāi)發(fā)者來(lái)說(shuō),了解Python軟件的電腦配置要求是非常重要的。本文將詳細(xì)介紹
    的頭像 發(fā)表于 11-29 14:58 ?9638次閱讀

    python shell怎么用

    Python Shell是一種交互式解釋器,可以通過(guò)命令行直接運(yùn)行Python代碼。在Shell中,可以輸入一行代碼并立即得到結(jié)果,非常適合于測(cè)試、嘗試新代碼或進(jìn)行簡(jiǎn)單的任務(wù)。本文將詳細(xì)介紹
    的頭像 發(fā)表于 11-29 14:36 ?1064次閱讀

    python軟件怎么運(yùn)行代碼

    Python是一種高級(jí)編程語(yǔ)言,它被廣泛用于開(kāi)發(fā)各種類型的應(yīng)用程序,從簡(jiǎn)單的腳本到復(fù)雜的網(wǎng)絡(luò)應(yīng)用和機(jī)器學(xué)習(xí)模型。要運(yùn)行Python代碼,您需要一個(gè)Python解釋器,它可以將您的代碼翻譯成計(jì)算機(jī)可以
    的頭像 發(fā)表于 11-28 16:02 ?842次閱讀

    如何運(yùn)行Python程序

    運(yùn)行Python程序非常簡(jiǎn)單。Python是一種解釋型語(yǔ)言,這意味著可以直接通過(guò)解釋器來(lái)執(zhí)行代碼。下面我將詳細(xì)介紹如何運(yùn)行Python程序。 一、安裝Python 在運(yùn)行
    的頭像 發(fā)表于 11-24 09:31 ?1121次閱讀

    python怎么運(yùn)行程序

    Python是一種廣泛使用的編程語(yǔ)言,它的簡(jiǎn)易和可讀性使得它成為初學(xué)者和專業(yè)開(kāi)發(fā)人員的首選。在運(yùn)行Python程序之前,您需要安裝Python解釋器,然后按照以下步驟進(jìn)行操作。 步驟1:安裝
    的頭像 發(fā)表于 11-24 09:25 ?2464次閱讀

    Python2與Python3的差異

    Python2與Python3是兩個(gè)不同的版本,它們?cè)谡Z(yǔ)法、功能和性能等方面存在一些差異。下面是對(duì)Python2和Python3的詳盡、詳實(shí)、細(xì)致的比較,分為以下幾個(gè)方面: 語(yǔ)法差異:
    的頭像 發(fā)表于 11-23 16:48 ?869次閱讀

    Python自帶的命令窗口

    Python自帶的命令窗口,也稱為Python交互式解釋器,是Python編程語(yǔ)言的一個(gè)重要工具,它允許用戶在命令行界面中輸入和執(zhí)行Python代碼。不同于編寫(xiě)腳本并保存為文件后再執(zhí)行
    的頭像 發(fā)表于 11-22 14:02 ?859次閱讀

    python升序和降序排序代碼

    Python是一種簡(jiǎn)潔而強(qiáng)大的編程語(yǔ)言,提供了許多實(shí)用的函數(shù)和方法來(lái)排序數(shù)據(jù)。在本文中,我們將詳細(xì)討論Python中的升序和降序排序。我們將深入探討不同的排序算法、它們的復(fù)雜度以及如何在Pyt
    的頭像 發(fā)表于 11-21 15:20 ?3040次閱讀

    python里item的用法

    item是Python中一個(gè)非常重要的概念,它可以用于多種數(shù)據(jù)結(jié)構(gòu)和算法的實(shí)現(xiàn)。在Python中,item通常用于表示一個(gè)集合或序列中的一個(gè)元素。本文將詳細(xì)介紹item的用法,并探討它在列表、字典
    的頭像 發(fā)表于 11-21 15:09 ?3394次閱讀