0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

神經(jīng)網(wǎng)絡(luò)可解釋性研究的重要性日益凸顯

WpOh_rgznai100 ? 來源:YXQ ? 2019-06-27 10:54 ? 次閱讀

本來想把題目取為“從煉丹到化學”,但是這樣的題目太言過其實,遠不是近期可以做到的,學術(shù)研究需要嚴謹。但是,尋找適當?shù)臄?shù)學工具去建模深度神經(jīng)網(wǎng)絡(luò)表達能力和訓練能力,將基于經(jīng)驗主義的調(diào)參式深度學習,逐漸過渡為基于一些評測指標定量指導的深度學習, 是新一代人工智能需要面對的課題,也是在當前深度學習渾渾噩噩的大背景中的一些新的希望。

這篇短文旨在介紹團隊近期的ICML工作——”Towards a Deep and Unified Understanding of Deep Neural Models in NLP”(這篇先介紹NLP領(lǐng)域,以后有時間再介紹類似思想解釋CV網(wǎng)絡(luò)的論文)。這是我與微軟亞洲研究院合作的一篇論文。其中,微軟研究院的王希廷研究員在NLP方向有豐富經(jīng)驗,王老師和關(guān)超宇同學在這個課題上做出了非常巨大的貢獻,這里再三感謝。

大家說神經(jīng)網(wǎng)絡(luò)是“黑箱”,其含義至少有以下兩個方面:一、神經(jīng)網(wǎng)絡(luò)特征或決策邏輯在語義層面難以理解;二、缺少數(shù)學工具去診斷與評測網(wǎng)絡(luò)的特征表達能力(比如,去解釋深度模型所建模的知識量、其泛化能力和收斂速度),進而解釋目前不同神經(jīng)網(wǎng)絡(luò)模型的信息處理特點。

過去我的研究一直關(guān)注第一個方面,而這篇ICML論文同時關(guān)注以上兩個方面——針對不同自然語言應用的神經(jīng)網(wǎng)絡(luò),尋找恰當?shù)臄?shù)學工具去建模其中層特征所建模的信息量,并可視化其中層特征的信息分布,進而解釋不同模型的性能差異。

其實,我一直希望去建模神經(jīng)網(wǎng)絡(luò)的特征表達能力,但是又一直遲遲不愿意下手去做。究其原因,無非是找不到一套優(yōu)美的數(shù)學建模方法。深度學習研究及其應用很多已經(jīng)被人詬病為“經(jīng)驗主義”與“拍腦袋”,我不能讓其解釋性算法也淪為經(jīng)驗主義式的拍腦袋——不然解釋性工作還有什么意義。

研究的難點在于對神經(jīng)網(wǎng)絡(luò)表達能力的評測指標需要具備“普適性”和“一貫性”。首先,這里“普適性”是指解釋性指標需要定義在某種通用的數(shù)學概念之上,保證與既有數(shù)學體系有盡可能多的連接,而與此同時,解釋性指標需要建立在盡可能少的條件假設(shè)之上,指標的計算算法盡可能獨立于神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和目標任務(wù)的選擇。

其次,這里的“一貫性”指評測指標需要客觀的反應特征表達能力,并實現(xiàn)廣泛的比較,比如

診斷與比較同一神經(jīng)網(wǎng)絡(luò)中不同層之間語義信息的繼承與遺忘;

診斷與比較針對同一任務(wù)的不同神經(jīng)網(wǎng)絡(luò)的任意層之間的語義信息分

比較針對不同任務(wù)的不同神經(jīng)網(wǎng)絡(luò)的信息處理特點。

具體來說,在某個NLP應用中,當輸入某句話x=[x1,x2,…,xn]到目標神經(jīng)網(wǎng)絡(luò)時,我們可以把神經(jīng)網(wǎng)絡(luò)的信息處理過程,看成對輸入單詞信息的逐層遺忘的過程。即,網(wǎng)絡(luò)特征每經(jīng)過一層傳遞,就會損失一些信息,而神經(jīng)網(wǎng)絡(luò)的作用就是盡可能多的遺忘與目標任務(wù)無關(guān)的信息,而保留與目標任務(wù)相關(guān)的信息。于是,相對于目標任務(wù)的信噪比會逐層上升,保證了目標任務(wù)的分類性能。

我們提出一套算法,測量每一中層特征f中所包含的輸入句子的信息量,即H(X|F=f)。當假設(shè)各單詞信息相互獨立時,我們可以把句子層面的信息量分解為各個單詞的信息量H(X|F=f) = H(X1=x1|F=f) + H(X2=x2|F=f) + … + H(Xn=xn|F=f). 這評測指標在形式上是不是與信息瓶頸理論相關(guān)?但其實兩者還是有明顯的區(qū)別的。信息瓶頸理論關(guān)注全部樣本上的輸入特征與中層特征的互信息,而我們僅針對某一特定輸入,細粒度地研究每個單詞的信息遺忘程度。

其實,我們可以從兩個不同的角度,計算出兩組不同的熵H(X|F=f)。(1)如果我們只關(guān)注真實自然語言的低維流形,那么p(X=x|F=f)的計算比較容易,可以將p建模為一個decoder,即用中層特征f去重建輸入句子x。(2)在這篇文章中,我們其實選取了第二個角度:我們不關(guān)注真實語言的分布,而考慮整個特征空間的分布,即x可以取值為噪聲。在計算p(X=x,F=f) = p(X=x) p(F=f|X=x)時,我們需要考慮“哪些噪聲輸入也可以生成同樣的特征f”。舉個toy example,當輸入句子是"How are you?"時,明顯“are”是廢話,可以從“How XXX you?”中猜得。這時,如果僅從真實句子分布出發(fā),考慮句子重建,那些話佐料(“are” “is” “an”)將被很好的重建。而真實研究選取了第二個角度,即我們關(guān)注的是哪些單詞被神經(jīng)網(wǎng)絡(luò)遺忘了,發(fā)現(xiàn)原來“How XYZ you?”也可以生成與“How are you?”一樣的特征。

這時,H(X|F=f)所體現(xiàn)的是,在中層特征f的計算過程中,哪些單詞的信息在層間傳遞的過程中逐漸被神經(jīng)網(wǎng)絡(luò)所忽略——將這些單詞的信息替換為噪聲,也不會影響其中層特征。這種情況下,信息量H(X|F=f)不是直接就可以求出來的,如何計算信息量也是這個課題的難點。具體求解的公式推導可以看論文,知乎上只放文字,不談公式。

首先,從“普適性”的角度來看,中層特征中輸入句子的信息量(輸入句子的信息的遺忘程度)是信息論中基本定義,它只關(guān)注中層特征背后的“知識量”,而不受網(wǎng)絡(luò)模型參數(shù)大小、中層特征值的大小、中層卷積核順序影響。其次,從“一貫性”的角度來看,“信息量”可以客觀反映層間信息快遞能力,實現(xiàn)穩(wěn)定的跨層比較。如下圖所示,基于梯度的評測標準,無法為不同中間層給出一貫的穩(wěn)定的評測。

下圖比較了不同可視化方法在分析“reverse sequence”神經(jīng)網(wǎng)絡(luò)中層特征關(guān)注點的區(qū)別。我們基于輸入單詞信息量的方法,可以更加平滑自然的顯示神經(jīng)網(wǎng)絡(luò)內(nèi)部信息處理邏輯。

下圖分析比較了不同可視化方法在診斷“情感語義分類”應用的神經(jīng)網(wǎng)絡(luò)中層特征關(guān)注點的區(qū)別。我們基于輸入單詞信息量的方法,可以更加平滑自然的顯示神經(jīng)網(wǎng)絡(luò)內(nèi)部信息處理邏輯。

基于神經(jīng)網(wǎng)絡(luò)中層信息量指標,分析不同神經(jīng)網(wǎng)絡(luò)模型的處理能力。我們分析比較了四種在NLP中常用的深度學習模型,即BERT, Transformer, LSTM, 和CNN。在各NLP任務(wù)中, BERT模型往往表現(xiàn)最好,Transformer模型次之。

如下圖所示,我們發(fā)現(xiàn)相比于LSTM和CNN,基于預訓練參數(shù)的BERT模型和Transformer模型往往可以更加精確地找到與任務(wù)相關(guān)的目標單詞,而CNN和LSTM往往使用大范圍的鄰接單詞去做預測。

進一步,如下圖所示,BERT模型在預測過程中往往使用具有實際意義的單詞作為分類依據(jù),而其他模型把更多的注意力放在了and the is 等缺少實際意義的單詞上。

如下圖所示,BERT模型在L3-L4層就已經(jīng)遺忘了EOS單詞,往往在第5到12層逐漸遺忘其他與情感語義分析無關(guān)的單詞。相比于其他模型,BERT模型在單詞選擇上更有針對性。

我們的方法可以進一步細粒度地分析,各個單詞的信息遺忘。BERT模型對各種細粒度信息保留的效果最好。

十多年前剛剛接觸AI時總感覺最難的是獨立找課題,后來發(fā)現(xiàn)追著熱點還是很容易拍腦袋想出一堆新題目,再后來發(fā)現(xiàn)真正想做的課題越來越少,雖然AI領(lǐng)域中學者們的投稿量一直指數(shù)增長。

回國以后,身份從博后變成了老師,帶的學生增加了不少,工作量也翻倍了,所以一直沒有時間寫文章與大家分享一些新的工作,如果有時間還會與大家分享更多的研究,包括這篇文章后續(xù)的眾多算法。信息量在CV方向應用的論文,以及基于這些技術(shù)衍生出的課題,我稍后有空再寫。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4717

    瀏覽量

    100018
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    28878

    瀏覽量

    266254

原文標題:上海交大張拳石:神經(jīng)網(wǎng)絡(luò)的可解釋性,從經(jīng)驗主義到數(shù)學建模

文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    基于FPGA的脈沖神經(jīng)網(wǎng)絡(luò)模型應用探索

    隨著人工智能技術(shù)的飛速發(fā)展,脈沖神經(jīng)網(wǎng)絡(luò)(Spiking Neural Network, SNN)作為一種模擬生物神經(jīng)系統(tǒng)處理信息的計算模型,因其獨特的生物可解釋性和低能耗特性而受到廣泛關(guān)注。然而
    的頭像 發(fā)表于 07-12 10:08 ?289次閱讀

    全卷積神經(jīng)網(wǎng)絡(luò)的工作原理和應用

    全卷積神經(jīng)網(wǎng)絡(luò)(FCN)是深度學習領(lǐng)域中的一種特殊類型的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),尤其在計算機視覺領(lǐng)域表現(xiàn)出色。它通過全局平均池化或轉(zhuǎn)置卷積處理任意尺寸的輸入,特別適用于像素級別的任務(wù),如圖像分割。本文將詳細探討全卷積神經(jīng)網(wǎng)絡(luò)的定義、原理、
    的頭像 發(fā)表于 07-11 11:50 ?472次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    廣泛應用的神經(jīng)網(wǎng)絡(luò)模型。它們各自具有獨特的特點和優(yōu)勢,并在不同的應用場景中發(fā)揮著重要作用。以下是對BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)關(guān)系的詳細探討,內(nèi)容將涵蓋兩者的定義、原理、區(qū)別、聯(lián)系以及應
    的頭像 發(fā)表于 07-10 15:24 ?585次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應用及
    的頭像 發(fā)表于 07-10 15:20 ?390次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的特點和優(yōu)越不包括什么

    在許多領(lǐng)域都取得了顯著的成果,如圖像識別、語音識別、自然語言處理等。然而,人工神經(jīng)網(wǎng)絡(luò)也存在一些局限性和不足之處,以下是對人工神經(jīng)網(wǎng)絡(luò)特點和優(yōu)越的分析,以及其不包括的一些方面。 人工神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-05 09:26 ?351次閱讀

    NLP技術(shù)在人工智能領(lǐng)域的重要性

    智能的橋梁,其重要性日益凸顯。本文將從NLP的定義、發(fā)展歷程、核心技術(shù)、應用領(lǐng)域以及對人工智能領(lǐng)域的深遠影響等多個維度,深入探討NLP技術(shù)在人工智能領(lǐng)域的重要性。
    的頭像 發(fā)表于 07-04 16:03 ?247次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學習領(lǐng)域中兩種非常重要神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 14:24 ?516次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)在許多領(lǐng)域都有廣泛的應用,如語音識別、圖像識別、自然語言處理等。然而,BP神經(jīng)網(wǎng)絡(luò)也存在一些問題,如容易陷入局部最優(yōu)解、訓練時間長、對初始權(quán)重敏感等。為了解決這些問題,研究者們提出了一些改進的BP
    的頭像 發(fā)表于 07-03 11:00 ?371次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    化能力。隨著深度學習技術(shù)的不斷發(fā)展,神經(jīng)網(wǎng)絡(luò)已經(jīng)成為人工智能領(lǐng)域的重要技術(shù)之一。卷積神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)
    的頭像 發(fā)表于 07-02 14:24 ?1033次閱讀

    神經(jīng)網(wǎng)絡(luò)在圖像識別中的應用

    隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)在圖像識別領(lǐng)域的應用日益廣泛。神經(jīng)網(wǎng)絡(luò)以其強大的特征提取和分類能力,為圖像識別帶來了革命的進步。本文將詳細介紹
    的頭像 發(fā)表于 07-01 14:19 ?412次閱讀

    【大規(guī)模語言模型:從理論到實踐】- 閱讀體驗

    注意力機制提高了模型在處理長序列數(shù)據(jù)時的性能,但在某些任務(wù)上,傳統(tǒng)的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或卷積神經(jīng)網(wǎng)絡(luò)(CNN)可能仍然具有優(yōu)勢。此外,注意力機制本身也可能存在某些性能瓶頸,需要進一步的研究和優(yōu)化
    發(fā)表于 06-07 14:44

    求助,ADC接地的重要性

    ADC接地的重要性
    發(fā)表于 06-04 07:56

    深入解讀pytorch的簡介和使用方法

    隨著人工智能領(lǐng)域的不斷發(fā)展和進步,神經(jīng)網(wǎng)絡(luò)框架的重要性日益凸顯。
    的頭像 發(fā)表于 12-13 17:31 ?1863次閱讀
    深入解讀pytorch的簡介和使用方法

    Python中進行特征重要性分析的9個常用方法

    重要性分析可以識別并關(guān)注最具信息量的特征,從而帶來以下幾個優(yōu)勢: 改進的模型性能 減少過度擬合 更快的訓練和推理 增強的可解釋性 下面我們深入了解在Python中的一些特性重要性分析的方法。 特征
    的頭像 發(fā)表于 10-16 11:09 ?632次閱讀
    Python中進行特征<b class='flag-5'>重要性</b>分析的9個常用方法

    機器學習模型可解釋性的結(jié)果分析

    模型的可解釋性是機器學習領(lǐng)域的一個重要分支,隨著 AI 應用范圍的不斷擴大,人們越來越不滿足于模型的黑盒特性,與此同時,金融、自動駕駛等領(lǐng)域的法律法規(guī)也對模型的可解釋性提出了更高的要求,在可解
    發(fā)表于 09-28 10:17 ?857次閱讀
    機器學習模型<b class='flag-5'>可解釋性</b>的結(jié)果分析