0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

愛因斯坦稱為“鬼魅般有時,量子糾纏的超距作用”

中科院半導體所 ? 來源:陳年麗 ? 2019-07-16 17:09 ? 次閱讀

它支撐了整個量子力學領域。愛因斯坦曾將這一現(xiàn)象稱為“鬼魅般有時,兩個相互作用的粒子——比如兩個通過分束器的光子,無論被分隔到多么遙遠,它們都可以保持聯(lián)系,并瞬間共享它們的物理狀態(tài)。這種神秘的聯(lián)系被稱為量子糾纏的超距作用”。

愛因斯坦之所以稱之為“鬼魅”,是因為兩個相距甚遠的糾纏粒子之間的相互作用所表現(xiàn)出的瞬時性,似乎與他的狹義相對論并不兼容。后來,約翰·貝爾(John Bell)正式提出了這種非局域相互作用的概念,描述了一種能展現(xiàn)這種鬼魅效應的強糾纏形式——被稱為貝爾糾纏。一直以來,雖然貝爾糾纏在量子計算和密碼學等許多實際應用中都得到了應用,但我們從來沒有捕獲它的圖像。

一篇于7月12日發(fā)表在《科學進展》上的論文中,格拉斯哥大學的一組物理學家描述了他們如何讓這種“鬼魅現(xiàn)象”首次出現(xiàn)在圖像中,這是第一次捕捉到量子糾纏的視覺證據(jù)。

實驗涉及到在4種不同的相變下捕捉光子的圖像,圖中所呈現(xiàn)的實際上是光子經(jīng)過了一系列的4個相變時所產(chǎn)生的多重圖像的結合。

他們設計了一個系統(tǒng)(實驗系統(tǒng)的設置如下圖所示),一個波長為355納米的準連續(xù)激光通過了一個BBO晶體(偏硼酸鋇晶體),從而通過自發(fā)參量下轉換(SPDC)過程產(chǎn)生了在空間上糾纏的光子對。這兩個波長為710納米的光子在一個分束器(BS)上分離,并沿著光學系統(tǒng)中的兩條不同的光路傳播。

實驗人員設置了一個超靈敏的照相機,能夠檢測到單個光子,只有當同時捕捉到一個光子和與它糾纏的另一個粒子時,照相機才會拍下照片,從而記錄下了一個可見的光子糾纏記錄。| 圖片來源:Moreau et al., Science Advances, 2019

第一個光子被放置于晶體的成像面上的空間光調制器(SLM)反射,并在被一個單模光纖收集之前,顯示出一個相位物體,然后在被光纖收集之后,再被一個單光子雪崩二極管(SPAD)探測到。另一個光子沿著另一條光路傳播,它被一個放置在晶體的傅里葉平面(相當于物體的傅里葉平面)的SLM反射。然后,這個光子會通過一個長約20米的延遲線(Delay line)傳播,最終被一個增強型電荷耦合檢測器(ICCD)相機檢測到。

ICCD相機會根據(jù)放置在第一條光路上的SPAD探測到光子的情況而被有條件地觸發(fā)的。而延遲線則確保了從ICCD相機所捕獲的圖像與SPAD檢測到的圖像是同步的。第二條光路中延遲線的存在彌補了相機的觸發(fā)延遲,并確保了第二個光子入射到相機上的時間的精確度,從而記錄下了一個可見的光子糾纏記錄。

物理學家Paul-Antoine Moreau是這篇論文的第一作者,他說:“我們成功捕捉到的這張照片,優(yōu)雅地展示了自然的一個基本屬性,這是這個屬性第一次以圖像的形式出現(xiàn)……這是一個令人興奮的結果,它將可以用于革新量子計算的新興領域,帶來新型的成像方法?!?/p>

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 量子
    +關注

    關注

    0

    文章

    477

    瀏覽量

    25461
  • 調制器
    +關注

    關注

    3

    文章

    828

    瀏覽量

    45080

原文標題:量子糾纏的第一張圖像

文章出處:【微信號:bdtdsj,微信公眾號:中科院半導體所】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    基于time-bin量子比特的高速率多路糾纏源——PPLN晶體應用

    基于time-bin量子比特的高速率多路糾纏源PPLN晶體應用隨著量子計算的不斷發(fā)展,對于現(xiàn)代公鑰加密的威脅也逐漸明顯起來。而量子密鑰分發(fā)(QKD)是克服這一威脅的方法之一,通過允許在
    的頭像 發(fā)表于 08-30 12:27 ?159次閱讀
    基于time-bin<b class='flag-5'>量子</b>比特的高速率多路<b class='flag-5'>糾纏</b>源——PPLN晶體應用

    【《計算》閱讀體驗】量子計算

    ,經(jīng)典計算可以看作量子計算的一個特例,所有經(jīng)典計算都可以在量子計算機上模擬。最后,量子計算直接操作的是物理對象本身,即量子比特,而并非如數(shù)字計算機一
    發(fā)表于 07-13 22:15

    中國科大成功構建高糾纏效率城域三節(jié)點量子網(wǎng)絡

    現(xiàn)有的單光子傳輸量子密鑰網(wǎng)絡已經(jīng)相對成熟。為了拓展到分布式量子計算和量子傳感器等領域,我們需要借助量子中繼技術在長達數(shù)十公里內的遠距量子存儲
    的頭像 發(fā)表于 05-16 11:26 ?649次閱讀

    量子糾纏探測與大小估算研究新突破

    量子糾纏作為量子理論的基石,也是量子信息領域的寶貴資源。在實驗過程中,有效的糾纏探測和衡量對實現(xiàn)眾多關鍵信息任務,譬如如何高效地利用
    的頭像 發(fā)表于 04-02 09:34 ?337次閱讀

    量子計算機重構未來 | 閱讀體驗】 跟我一起漫步量子計算

    的未來。首先,量子計算機在藥物研發(fā)領域具有顛覆性的潛力。通過模擬分子的復雜相互作用,量子計算機可以加速新藥的研發(fā)過程,這不僅可以更快地找到治療各種疾病的藥物,而且可能推動個性化醫(yī)療的普及。這種變革將對醫(yī)療
    發(fā)表于 03-13 19:28

    量子

    具有一些特殊的性質,如疊加和糾纏,使得量子計算機能夠在某些情況下比傳統(tǒng)計算機更高效地解決某些問題。 量子計算機的一個重要應用領域是密碼學。傳統(tǒng)計算機在破解當前常用的加密算法時需要耗費巨大的時間,而
    發(fā)表于 03-13 18:18

    量子計算機重構未來 | 閱讀體驗】+ 了解量子疊加原理

    邏輯門,但是它們可以操作疊加態(tài)和糾纏態(tài)。 量子計算機的計算能力主要來自于量子比特的疊加特性,通過操縱量子比特的疊加態(tài),量子計算機可以同時進行
    發(fā)表于 03-13 17:19

    量子計算機重構未來 | 閱讀體驗】+量子計算機的原理究竟是什么以及有哪些應用

    計算的基本原理,利用了量子的疊加態(tài)的特性。然后量子計算如何實現(xiàn)信息的傳遞呢,使用了量子糾纏的特性。書中2.1.4章節(jié)進行了介紹,書中舉得手勢的例子也比較有意思比較好懂。 通過以上可以
    發(fā)表于 03-11 12:50

    量子計算機重構未來 | 閱讀體驗】第二章關鍵知識點

    量子計算機所能做的,剛好是減少計算和操作的繁瑣程度。也就是說,量子計算機是因為計算過程簡化而速度快的計算機。而在這個方向上實現(xiàn)進化的量子計算機被稱為門模型
    發(fā)表于 03-06 23:17

    量子計算機重構未來 | 閱讀體驗】+ 初識量子計算機

    欣喜收到《量子計算機——重構未來》一書,感謝電子發(fā)燒友論壇提供了一個讓我了解量子計算機的機會! 自己對電子計算機有點了解,但對量子計算機真是一無所知,只是聽說過量子
    發(fā)表于 03-05 17:37

    什么是光電量子計算芯片?

    什么是光電量子計算芯片? 光電量子計算芯片,也被稱為光子量子計算芯片,是一種新型的計算芯片,利用光子來存儲和處理信息。它的核心原理是基于光子的量子
    的頭像 發(fā)表于 01-09 14:42 ?829次閱讀

    量子計算機的作用有哪些

    認為是未來計算機技術的重要發(fā)展方向。 一、量子計算機的基本概念 量子計算機的核心是量子比特,與經(jīng)典計算機中的比特不同,量子比特可以同時處于0和1的狀態(tài),這種現(xiàn)象被
    的頭像 發(fā)表于 12-30 14:32 ?1775次閱讀

    首次實現(xiàn)按需分子之間的糾纏

    量子信息處理需要量子糾纏的受控產(chǎn)生和操縱。盡管各種原子、光子和超導平臺上已經(jīng)實現(xiàn)了糾纏,但控制分子糾纏的產(chǎn)生是一個長期存在的挑戰(zhàn)。
    的頭像 發(fā)表于 12-20 11:26 ?332次閱讀
    首次實現(xiàn)按需分子之間的<b class='flag-5'>糾纏</b>

    淺談量子糾纏相關的量子應用

    為了證明分子的糾纏,作者測量了貝爾態(tài)創(chuàng)建保真度F。根據(jù)布居和宇稱振蕩測量,獲得了FRAW=0.540的原始貝爾態(tài)保真度,原始保真度和測量校正保真度均高于1/2,表明糾纏確實存在并按需創(chuàng)建。
    的頭像 發(fā)表于 12-15 10:24 ?815次閱讀

    光子的量子糾纏實現(xiàn)快速可視化

    ? 加拿大渥太華大學與意大利羅馬第一大學的科學家展示了一種新技術,可實時可視化兩個糾纏光子(構成光的基本粒子)的波函數(shù)。這一成果有望加速量子技術的進步,改進量子態(tài)表征、量子通信并開發(fā)新
    的頭像 發(fā)表于 12-01 10:34 ?326次閱讀