0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

超構(gòu)材料與紅外探測芯片的結(jié)合

Sq0B_Excelpoint ? 來源:YXQ ? 2019-07-23 17:05 ? 次閱讀

超構(gòu)材料具有強(qiáng)大的電磁波參量調(diào)控與分辨功能,可以構(gòu)成多功能的超薄平面光學(xué)元件。由于超構(gòu)材料的制造工藝與集成電路芯片的制造工藝是一致的,而目前集成電路的工藝節(jié)點(diǎn)尺寸已達(dá)到了10nm以下的精度,因此大規(guī)模制備基于超構(gòu)材料的多功能電磁參量調(diào)控元件也不存在根本性的障礙。用超構(gòu)材料取代單一功能的傳統(tǒng)紅外光學(xué)元件,并與紅外探測芯片結(jié)合,勢必革新傳統(tǒng)的紅外成像探測系統(tǒng)架構(gòu),導(dǎo)致結(jié)構(gòu)更為緊湊、功能更為多樣的紅外探測成像系統(tǒng)出現(xiàn),而這也契合了紅外探測芯片和成像系統(tǒng)的未來發(fā)展趨勢:在系統(tǒng)緊湊化、輕量化的基礎(chǔ)上實(shí)現(xiàn)更多的功能。以下,對近年來國內(nèi)、外在將超構(gòu)材料與紅外探測芯片結(jié)合、壓縮成像系統(tǒng)體積并實(shí)現(xiàn)新型探測功能方面的代表性工作進(jìn)行了回顧與梳理。

3.1 超構(gòu)材料調(diào)控探測芯片的光譜響應(yīng)

日本三菱電子公司高等技術(shù)研究所的Shinpei Ogawa等人從2012年開始發(fā)表了一系列論文,報(bào)道了如何將超構(gòu)材料吸收體集成在基于摻雜多晶硅的熱電堆探測器像元上,實(shí)現(xiàn)波長選擇型探測和偏振選擇型探測。如圖13(a)、圖13(b)所示,論文采用了圓形金屬槽陣列作為具有波長選擇功能的超構(gòu)材料吸收體。從圖13(c)可以看出,超構(gòu)材料吸收體只在某個(gè)峰值波長附近較窄的波長范圍內(nèi)具有高吸收率,而通過調(diào)節(jié)金屬槽陣列的單元周期,可以調(diào)控峰值吸收波長。因此,超構(gòu)材料吸收體起到了波長可調(diào)的吸收式窄帶濾光片的作用。如果將超構(gòu)材料吸收體與熱電堆探測器的像元進(jìn)行集成,如圖13(d)、圖13(e)所示,就可以實(shí)現(xiàn)波長可調(diào)的窄帶熱探測。需要指出的是,熱探測材料對入射光的波長是沒有分辨能力的,因此傳統(tǒng)的熱探測器的光譜響應(yīng)是寬帶的,而要實(shí)現(xiàn)窄帶熱探測,一般要依賴外加的分立式窄帶濾光片。超構(gòu)材料吸收體的引入,使熱探測器在像元層次上具有獨(dú)立分辨電磁波長的能力,可以在不依賴分立式窄帶濾光片的前提下便實(shí)現(xiàn)窄帶探測,這使得基于熱探測像元陣列的非制冷紅外焦平面有了更大的設(shè)計(jì)自由度。圖13(f)展示了如何構(gòu)建像元陣列,并獨(dú)立調(diào)控每個(gè)像元上集成的吸收體的吸收波長,從而實(shí)現(xiàn)中紅外波段的多波長探測功能。圖13(g)給出了兩個(gè)像元的響應(yīng)率與入射光波長的關(guān)系曲線,即光譜響應(yīng)率。這兩個(gè)像元分別集成了具有不同吸收波長的吸收體,因此,它們的光譜響應(yīng)率的峰值也分別位于不同的波長處。圖13(h)則給出了8個(gè)像元的峰值響應(yīng)波長??梢钥闯觯ㄟ^調(diào)節(jié)金屬槽陣列的單元周期,像元的峰值響應(yīng)波長可以覆蓋整個(gè)中紅外波段。集成超構(gòu)材料吸收體的熱電堆像元的制造工藝流程如圖13(i)所示,該流程采用了與CMOS兼容的工藝,因此可以利用集成電路芯片的生產(chǎn)線進(jìn)行大規(guī)模生產(chǎn)。

圖13 利用二維周期性金屬圓槽陣列調(diào)控?zé)犭姸烟綔y器的紅外光譜響應(yīng)

沿著利用超構(gòu)材料調(diào)控?zé)崽綔y器像元光譜響應(yīng)的思路,Shinpei Ogawa等人進(jìn)一步開發(fā)了基于SOI二極管的雙色成像熱探測器。如圖14(a)所示,該探測器采用 “金屬天線陣列-介質(zhì)層-金屬背板”(即MIM結(jié)構(gòu))的超構(gòu)材料吸收體實(shí)現(xiàn)對入射光波長的選擇。上層的金屬天線為圓盤型,以確保對入射光的偏振態(tài)不敏感吸收。同時(shí),在MIM結(jié)構(gòu)中還留出了若干釋放孔,用于形成懸空的支撐結(jié)構(gòu),如圖14(b)所示。由于MIM結(jié)構(gòu)的超構(gòu)材料吸收體對入射光的局域化功能很強(qiáng),釋放孔的存在對吸收體的吸收譜影響并不大。如圖14(c)所示,通過調(diào)節(jié)上層圓盤型金屬天線的尺寸,便可以靈活調(diào)控吸收體的吸收波長。集成超構(gòu)材料吸收體的完整像元結(jié)構(gòu)及其典型光譜響應(yīng)曲線如圖14(d)、圖14(e)所示?;谶@種像元結(jié)構(gòu),作者制作了相應(yīng)的焦平面陣列,如圖14(f)所示。焦平面陣列的像元間距(pixel-pitch)為50μm,像元陣列的大小為320×240,整個(gè)焦平面陣列的尺寸為20.0mm×19.0mm。為實(shí)現(xiàn)實(shí)時(shí)的雙色成像探測,像元陣列被劃分為左右兩半,通過調(diào)控上層金屬天線的結(jié)構(gòu)和大小,將左半邊像元陣列的探測波長設(shè)定為4.7μm,右半邊像元陣列的探測波長設(shè)定為7.6μm。為了驗(yàn)證雙色成像探測功能,作者將一個(gè)輻射體與一個(gè)中心波長為4.7μm的窄帶濾光片的組合作為探測目標(biāo)。對該探測目標(biāo)的成像效果如圖14(g)所示。可以看到,只有左半邊像元陣列可以對目標(biāo)進(jìn)行成像,而右半邊像元陣列對探測目標(biāo)沒有響應(yīng),這也就驗(yàn)證了雙色成像探測的功能。

圖14 基于超構(gòu)材料的雙色紅外成像探測芯片

超構(gòu)材料不但可以分辨入射光的頻率,還可以分辨入射光的偏振態(tài),上述目標(biāo)只需要在亞波長單元的結(jié)構(gòu)中引入不對稱性即可實(shí)現(xiàn)。例如,Shinpei Ogawa等人于2014年報(bào)道了采用橢圓形金屬槽陣列作為具有偏振態(tài)選擇功能的超構(gòu)材料吸收體,如圖15(a)、圖15(b)所示。由于橢圓形金屬槽具有結(jié)構(gòu)不對稱性,只有在入射光的電場分量平行于橢圓的短軸時(shí)才會(huì)激發(fā)諧振,因此其具有分辨偏振態(tài)的能力,如圖15(c)所示。而如果將這種超構(gòu)材料吸收體與熱電堆探測器像元進(jìn)行集成,如圖15(d)、圖15(e)所示,就可以調(diào)控像元響應(yīng)與入射光偏振態(tài)的關(guān)系,即偏振光譜響應(yīng)。從圖15(f)可以看出,集成超構(gòu)材料吸收體的熱電堆探測器像元對兩種偏振態(tài)的響應(yīng)是不同的,即其具有了獨(dú)立的偏振態(tài)分辨能力。對于焦平面探測器而言,這意味著可以靈活設(shè)置像元陣列中每個(gè)像元所響應(yīng)的偏振態(tài)。如果將像元陣列中四個(gè)相鄰的像元規(guī)定為一個(gè)超像元,并將其中每個(gè)像元所響應(yīng)的偏振態(tài)按圖15(g)所示的方式進(jìn)行設(shè)置,就可以根據(jù)它們的讀出信號,按照斯托克斯公式計(jì)算出入射光的偏振度和偏振角,這也是分焦平面式偏振成像探測的原理。

圖15 利用二維橢圓金屬槽陣列調(diào)控?zé)犭姸烟綔y器的紅外偏振/光譜響應(yīng)

基于相同的思路,Shinpei Ogawa等人于2015年報(bào)道了采用基于條形金屬槽陣列的偏振敏感型超構(gòu)材料吸收體,如圖16(a)、圖16(b)所示。由于條型金屬槽同樣具有結(jié)構(gòu)的不對稱性,因此其也具有對入射光偏振態(tài)的分辨能力。圖16(c)、圖16(d)給出了集成條狀金屬槽陣列的熱電堆探測器像元,而這種像元對兩種入射光偏振態(tài)的光譜響應(yīng)如圖16(e)、圖16(f)所示。

圖16 利用一維周期性金屬槽陣列調(diào)控?zé)犭姸烟綔y器的紅外偏振/光譜響應(yīng)

本文作者與同事從2012年開始發(fā)表了一系列論文,報(bào)道了將超構(gòu)材料吸收體集成在基于雙材料懸臂梁的熱形變探測器像元上,實(shí)現(xiàn)波長選擇型探測和偏振選擇型探測的工作。如圖17(a)、圖17(b)所示,熱形變探測器的像元由“25nm金薄膜+100nm氮化硅薄膜”的雙材料懸臂梁結(jié)構(gòu)組成,臂長為500μm,寬為100μm,且兩端固定。在入射紅外光的照射下,懸臂梁吸收光能并將其轉(zhuǎn)化為熱能,導(dǎo)致溫度升高。在溫升的作用下,金薄膜與氮化硅薄膜之間的受熱膨脹程度差異將導(dǎo)致懸臂梁發(fā)生彎曲形變,而這種彎曲形變的程度與入射光的光強(qiáng)成正比。因此,通過測量雙材料懸臂梁結(jié)構(gòu)的形變量,就可以讀出入射紅外光的光強(qiáng)。與其他類型的熱探測器一樣,熱形變探測器對入射光的波長和偏振態(tài)也不具備分辨能力。因此,在雙材料懸臂梁上集成了基于納米槽天線陣列的超構(gòu)材料吸收體,如圖17(c)所示。由于納米槽天線在結(jié)構(gòu)上具有不對稱性,因此只有當(dāng)入射光的偏振態(tài)垂直于納米槽時(shí),才能激發(fā)起電磁諧振,即對入射光的偏振態(tài)具有分辨能力。當(dāng)入射光的偏振態(tài)垂直于納米槽時(shí),電磁諧振的峰值波長與納米槽的長度線性相關(guān),如圖17(d)所示,即對入射光的波長具有分辨能力。為了測量懸臂梁的形變量,采用了基于光纖的法布里-帕羅干涉儀結(jié)構(gòu),如圖17(e)所示。在該結(jié)構(gòu)中,懸臂梁是一個(gè)反射面,光纖端面是另一個(gè)反射面,兩個(gè)反射面之間的間距(即干涉儀的腔長),受到懸臂梁彎曲形變的調(diào)控。通過光纖向干涉儀注入1550nm的測試光,并根據(jù)干涉儀反射回的光的強(qiáng)度,便可以推算出干涉儀的腔長變化量,即懸臂梁的彎曲形變量。我們用輸出光波長為6μm的中紅外量子級聯(lián)激光器作為光源,對該熱形變探測器進(jìn)行了測試,集成在懸臂梁上的納米槽天線的峰值吸收波長也設(shè)定為6μm。圖17(f)給出了納米槽天線的吸收系數(shù)和探測器的電壓響應(yīng)率與入射光波長的關(guān)系。圖17(g)給出了入射光在受到斬波器的調(diào)制時(shí),探測器的響應(yīng)率隨調(diào)制頻率的變化曲線。

圖17 利用基于納米槽天線的超構(gòu)材料吸收體調(diào)控?zé)嵝巫兲綔y器的紅外偏振/光譜響應(yīng)

美國杜克大學(xué)的Willie Padilla等人于2017年報(bào)道了將超構(gòu)材料吸收體與基于鈮酸鋰薄膜的熱釋電探測器像元進(jìn)行集成、實(shí)現(xiàn)波長選擇型探測的工作。如圖18(a)所示,該探測器采用厚度為575nm的單晶鈮酸鋰薄膜作為熱釋電材料,同時(shí)熱釋電薄膜也構(gòu)成了 “金屬天線-介質(zhì)層-金屬背板”三層結(jié)構(gòu)中的介質(zhì)層。熱釋電薄膜的上方是分裂十字金天線陣列,如圖18(b)所示,薄膜下方是金背板。天線陣列的大小為150μm×150μm,如圖18(c)所示,這同時(shí)也定義了熱探測器像元的大小。圖18(d)給出了三層結(jié)構(gòu)對入射光的典型吸收譜線。可以看出,三層結(jié)構(gòu)可以選擇性地吸收特定波長范圍內(nèi)的入射光。而通過調(diào)整上層天線陣列的結(jié)構(gòu)與尺寸參數(shù),可以靈活調(diào)控對入射光的峰值吸收波長,如圖18(e)所示。當(dāng)入射光波長等于峰值吸收波長時(shí),三層結(jié)構(gòu)內(nèi)部的光功率損耗密度分布、溫度分布及相應(yīng)的熱釋電電場場強(qiáng)的分布情況由圖18(f)給出。可以看出,在峰值波長處,入射光被局限在三層結(jié)構(gòu)內(nèi)。由于金屬材料和薄膜鈮酸鋰材料對光均有吸收作用,吸收的光能通過歐姆損耗轉(zhuǎn)化為熱能并導(dǎo)致溫度上升,而溫度的上升又導(dǎo)致熱釋電薄膜上下兩極之間產(chǎn)生電荷堆積和相應(yīng)的電信號輸出。圖18(g)對比了該探測器的光譜響應(yīng)曲線與超構(gòu)材料吸收體的光譜吸收曲線??梢钥闯觯诩闪苏瓗С瑯?gòu)材料吸收體之后,探測器的光譜響應(yīng)也變?yōu)榱苏瓗У?,即?shí)現(xiàn)了波長選擇型的探測。

圖18 利用基于分裂十字天線的超構(gòu)材料吸收體調(diào)控?zé)後岆娞綔y器的紅外光譜響應(yīng)

3.2 超構(gòu)材料作為探測芯片的波前調(diào)控元件

在Capasso等人提出廣義折反射定律并展示出基于天線陣列的平面聚焦透鏡后,學(xué)術(shù)界對利用超構(gòu)材料(表面)實(shí)現(xiàn)多功能的平面光學(xué)元件產(chǎn)生了濃厚的興趣,而成像透鏡作為各種光學(xué)系統(tǒng)的關(guān)鍵部件,也成為了超構(gòu)材料的一個(gè)標(biāo)志性的應(yīng)用。從2016年開始,學(xué)術(shù)界報(bào)道了一系列基于超構(gòu)材料的平面成像透鏡(超透鏡,metalens)的工作,這里選取兩個(gè)工作在中紅外波段的典型成像超透鏡案例加以說明。

澳大利亞國立大學(xué)的Barry Luther-davies等人于2017年報(bào)道了基于納米硅柱陣列的平面成像透鏡。如圖19(a)所示,該透鏡的陣列基本單元為納米硅柱,襯底為MgF2。納米硅柱陣列在工作波長λ=4μm附近的振幅響應(yīng)(Transmission)和相位響應(yīng)(Phase)隨硅柱的底面半徑(Radius)及陣列單元的尺寸(Lattice Constant)的變化規(guī)律,由圖19(b)、圖19(c)給出。作者利用該納米硅柱陣列進(jìn)行了基本的光線偏折的驗(yàn)證性工作,仿真驗(yàn)證結(jié)果如圖19(d)、圖19(e)所示。為檢驗(yàn)納米硅柱陣列對光束聚焦的能力,作者根據(jù)式(3)所描述的相位分布函數(shù)對納米硅柱陣列的排布進(jìn)行了設(shè)計(jì)(圖19(f)),并實(shí)驗(yàn)制備了6個(gè)直徑D為300μm的納米硅柱陣列。每個(gè)陣列的焦距f依次為50μm、100μm、150μm、200μm、250μm、300μm,對應(yīng)的數(shù)值孔徑依次為0.95、0.83、0.71、0.6、0.51、0.45。

圖19 基于硅納米柱陣列的中紅外超透鏡

圖19(i)給出了光束聚焦實(shí)驗(yàn)的測量結(jié)果。可以看出,該納米硅柱陣列的聚焦能力已接近衍射極限。為檢驗(yàn)納米硅柱陣列的成像效果,作者制備了直徑為2mm、焦距f也為2mm的納米硅柱陣列。作者首先用該納米硅柱陣列對自制的樣品進(jìn)行了成像實(shí)驗(yàn),效果如圖19(j)所示。隨后,作者又用1951年美國空軍制定的標(biāo)準(zhǔn)測試圖案(圖19(l))作為成像對象檢驗(yàn)了該納米硅柱陣列的成像效果,如圖19(k)所示。結(jié)果顯示,當(dāng)該納米硅柱陣列的放大倍數(shù)為120倍時(shí),可以分辨的最小線寬為4.38μm。作為對比,作者又采用傳統(tǒng)的非球面硫系玻璃透鏡(C036TME-E, Thorlabs, NA=0.56)進(jìn)行了成像實(shí)驗(yàn),結(jié)果如圖19(m)所示,該硫系玻璃透鏡可以分辨的最小尺度為3.48μm。由于硫系玻璃透鏡的數(shù)值孔徑比納米硅柱陣列的數(shù)值孔徑大出約10%,作者得出的結(jié)論是,納米硅柱陣列的分辨能力與硫系玻璃透鏡的成像分辨能力相當(dāng)。

美國麻省理工學(xué)院的Juejun Hu等人于2018年報(bào)道了基于碲化鉛(PbTe)納米結(jié)構(gòu)陣列的平面成像透鏡,襯底為氟化鈣CaF2,工作波長λ0=5.2μm。為同時(shí)得到0~2π的相位響應(yīng)范圍和較高的透射率,納米結(jié)構(gòu)陣列中的基本單元(meta-atom)選取了長方形和H型兩種結(jié)構(gòu),基本單元的周期P為2.5μm、厚度為650nm。圖20(a)~圖20(c)給出了長方形基本單元的結(jié)構(gòu)示意圖、振幅響應(yīng)和相位響應(yīng)。從圖20(d)可以看出,雖然長方形基本單元的相位響應(yīng)能夠覆蓋0~2π,但是在其中120°的相位響應(yīng)范圍內(nèi),基本單元的透射率較低 (low efficiency gap)。因此,作者引入了H型的基本單元結(jié)構(gòu),如圖20(e)所示。從圖20(f)可以看出,H型結(jié)構(gòu)能夠有效填補(bǔ)長方形結(jié)構(gòu)透射率較低的相位響應(yīng)范圍。將兩種結(jié)構(gòu)結(jié)合起來,就可得出相位響應(yīng)范圍覆蓋0~2π、同時(shí)透射率又較高的一組基本單元,如圖20(g)所示。作者基于設(shè)計(jì)好的基本單元進(jìn)行了平面透鏡的制備。圖20(h)、圖20(i)給出了碲化鉛薄膜的折射率和消光系數(shù)的實(shí)際測量值,以及實(shí)驗(yàn)制備的長方形和H型基本單元的掃描電鏡圖。圖20(j)~圖20(l)給出了用作平面成像透鏡的納米結(jié)構(gòu)陣列的掃描電鏡圖。該平面透鏡的直徑為1mm,焦距f=0.5mm。作者用1951年美國空軍制定的測試圖案對平面透鏡進(jìn)行了成像實(shí)驗(yàn),如圖20(m)所示。實(shí)驗(yàn)測得的成像分辨率為3.9μm,與在衍射極限條件下采用瑞利判據(jù)的理論計(jì)算值3.4μm接近。

事實(shí)上,采用H型等一些不同于圓柱、長方體的結(jié)構(gòu),以此來填補(bǔ)在相位響應(yīng)覆蓋上的不足這種方法,在目前的超透鏡研究領(lǐng)域具有非常普遍的應(yīng)用。在對單元的設(shè)計(jì)中,半徑這一自由度可以用來調(diào)控相位響應(yīng),以此實(shí)現(xiàn)聚焦成像功能。而當(dāng)要給予超透鏡其他附加的功能(比如消除色差時(shí)),就需要另外的一個(gè)自由度。將納米陣列的形狀由圓柱、長方體改為其他形狀,正是引入新的自由度的方法。

圖20 基于PbTe納米結(jié)構(gòu)單元陣列的中紅外超透鏡


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 紅外
    +關(guān)注

    關(guān)注

    8

    文章

    732

    瀏覽量

    94779
  • 超構(gòu)材料
    +關(guān)注

    關(guān)注

    2

    文章

    3

    瀏覽量

    2093

原文標(biāo)題:ADI高性能工業(yè)產(chǎn)品研討會(huì)-無錫站

文章出處:【微信號:Excelpoint_CN,微信公眾號:Excelpoint_CN】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    基于相變材料的可重構(gòu)構(gòu)表面用于圖像處理

    光學(xué)構(gòu)表面(metasurface)實(shí)現(xiàn)了在亞波長尺度內(nèi)的模擬計(jì)算和圖像處理,并具備更低的功耗、更快的速度。雖然人們已經(jīng)展示了各種圖像處理構(gòu)表面,但大多數(shù)考慮的器件都是靜態(tài)的,缺乏
    的頭像 發(fā)表于 11-13 10:24 ?44次閱讀
    基于相變<b class='flag-5'>材料</b>的可重構(gòu)<b class='flag-5'>超</b><b class='flag-5'>構(gòu)</b>表面用于圖像處理

    被動(dòng)紅外探測器與主動(dòng)紅外探測器的原理比較

    被動(dòng)紅外探測器(Passive Infrared Detector, PIR)和主動(dòng)紅外探測器(Active Infrared Detector, AID)是兩種常見的安全監(jiān)控設(shè)備,它
    的頭像 發(fā)表于 09-20 11:38 ?786次閱讀

    被動(dòng)紅外探測器和主動(dòng)紅外探測器的區(qū)別

    被動(dòng)紅外探測器和主動(dòng)紅外探測器是兩種常見的安全監(jiān)控設(shè)備,它們在防盜、監(jiān)控、邊界防護(hù)等方面有著廣泛的應(yīng)用。這兩種探測器的主要區(qū)別在于它們檢測
    的頭像 發(fā)表于 09-20 11:35 ?742次閱讀

    透鏡的設(shè)計(jì)與分析

    ** 仿真與設(shè)置:單平臺(tái)互操作性 連接建模技術(shù):構(gòu)透鏡 ? 構(gòu)透鏡(柱結(jié)構(gòu)分析) ? 傳播到焦點(diǎn) ? 探測器 周期性微納米結(jié)構(gòu)可用的
    發(fā)表于 08-06 13:48

    基于米氏構(gòu)表面的像素集成長波多光譜Ⅱ類晶格探測

    μm)。目前,長波紅外多光譜探測器主要包括碲鎘汞、Ⅲ–Ⅴ族晶格、量子阱等傳統(tǒng)半導(dǎo)體材料。然而,基于半導(dǎo)體材料多光譜
    的頭像 發(fā)表于 06-30 15:34 ?1.1w次閱讀
    基于米氏<b class='flag-5'>超</b><b class='flag-5'>構(gòu)</b>表面的像素集成長波多光譜Ⅱ類<b class='flag-5'>超</b>晶格<b class='flag-5'>探測</b>器

    非制冷紅外探測器的敏感材料

    ,并將這種無形的輻射轉(zhuǎn)化成我們可以分析和研究的電信號。你是否想過,是什么使紅外探測器具有這種神奇的功能呢?答案就是敏感材料。敏感材料紅外
    的頭像 發(fā)表于 06-27 17:24 ?368次閱讀
    非制冷<b class='flag-5'>紅外</b><b class='flag-5'>探測</b>器的敏感<b class='flag-5'>材料</b>

    柔性太赫茲構(gòu)材料傳感器,用于農(nóng)藥濃度檢測

    近日,西安交通大學(xué)電信學(xué)部信通學(xué)院徐開達(dá)課題組與中物院微系統(tǒng)與太赫茲研究中心開展合作研究,利用柔性襯底與石墨烯材料設(shè)計(jì)了一款應(yīng)用于農(nóng)藥濃度檢測的太赫茲構(gòu)材料傳感器。
    的頭像 發(fā)表于 05-28 10:24 ?1771次閱讀
    柔性太赫茲<b class='flag-5'>超</b><b class='flag-5'>構(gòu)</b><b class='flag-5'>材料</b>傳感器,用于農(nóng)藥濃度檢測

    用于制造紫外構(gòu)表面的定制化高折射率納米復(fù)合材料

    納米壓印光刻(NIL)技術(shù)已被用于解決光學(xué)構(gòu)表面(metasurfaces)的高成本和低產(chǎn)量的制造挑戰(zhàn)。為了克服以低折射率(n)為特征的傳統(tǒng)壓印樹脂的固有局限性,引入了高折射率納米復(fù)合材料直接用作
    的頭像 發(fā)表于 05-09 09:09 ?506次閱讀
    用于制造紫外<b class='flag-5'>超</b><b class='flag-5'>構(gòu)</b>表面的定制化高折射率納米復(fù)合<b class='flag-5'>材料</b>

    銻化物晶格紅外探測器研究進(jìn)展與發(fā)展趨勢綜述

    銻化物晶格紅外探測器具有均勻性好、暗電流低和量子效率較高等優(yōu)點(diǎn),其探測波長靈活可調(diào),可以覆蓋短波至甚長波整個(gè)紅外譜段,是實(shí)現(xiàn)高均勻大面陣、
    的頭像 發(fā)表于 04-19 09:13 ?978次閱讀
    銻化物<b class='flag-5'>超</b>晶格<b class='flag-5'>紅外</b><b class='flag-5'>探測</b>器研究進(jìn)展與發(fā)展趨勢綜述

    中波紅外量子點(diǎn)材料及其光電探測器研究分析

    中波紅外量子點(diǎn)材料的成功制備是量子點(diǎn)在中波紅外波段諸如軍事國防、工業(yè)監(jiān)控和環(huán)境監(jiān)測等實(shí)際場景實(shí)現(xiàn)應(yīng)用的重要前提,而自量子點(diǎn)被發(fā)現(xiàn)可應(yīng)用于中波紅外波段
    發(fā)表于 01-05 09:28 ?985次閱讀
    中波<b class='flag-5'>紅外</b>量子點(diǎn)<b class='flag-5'>材料</b>及其光電<b class='flag-5'>探測</b>器研究分析

    基于構(gòu)透鏡的粒子圖像測速技術(shù)

    研究嘗試將光學(xué)材料與PIV技術(shù)融合,以實(shí)現(xiàn)PIV系統(tǒng)小型化的目的。構(gòu)透鏡是一種先進(jìn)的平面光學(xué)元件,由人工制造的納米單元陣列組成。
    發(fā)表于 01-02 13:47 ?387次閱讀
    基于<b class='flag-5'>超</b><b class='flag-5'>構(gòu)</b>透鏡的粒子圖像測速技術(shù)

    什么是紅外輻射?紅外探測器的分類

    紅外輻射是波長介于可見光與微波之間的電磁波,人眼察覺不到,紅外探測器是可以將入射的紅外輻射信號轉(zhuǎn)變成電信號輸出的器件,幫助人們看見未知的世界。本文將從分類、波段、
    的頭像 發(fā)表于 01-02 09:56 ?1678次閱讀
    什么是<b class='flag-5'>紅外</b>輻射?<b class='flag-5'>紅外</b><b class='flag-5'>探測</b>器的分類

    非均勻GaAs/AlGaAs量子阱紅外探測器材料表征和器件性能研究

    量子阱紅外探測器基于子帶躍遷的工作原理,探測器吸收紅外輻射后激發(fā)量子阱中的電子,使其從基態(tài)躍遷到連續(xù)態(tài)中,從而實(shí)現(xiàn)紅外
    的頭像 發(fā)表于 12-18 10:42 ?639次閱讀
    非均勻GaAs/AlGaAs量子阱<b class='flag-5'>紅外</b><b class='flag-5'>探測器材料</b>表征和器件性能研究

    基于構(gòu)材料紅外和雷達(dá)兼容隱身材料應(yīng)用

    紅外隱身材料和雷達(dá)隱身材料材料吸收率上存在隱身機(jī)理方面的矛盾,這導(dǎo)致通過單一型傳統(tǒng)材料實(shí)現(xiàn)兩者的兼容難度較大。但是通過單一型傳統(tǒng)
    發(fā)表于 12-02 10:44 ?533次閱讀
    基于<b class='flag-5'>超</b><b class='flag-5'>構(gòu)</b><b class='flag-5'>材料</b>的<b class='flag-5'>紅外</b>和雷達(dá)兼容隱身<b class='flag-5'>材料</b>應(yīng)用

    快照高光譜成像:構(gòu)光學(xué)+小數(shù)據(jù)凸優(yōu)化/深度學(xué)習(xí)理論

    該研究不使用濾波器構(gòu)建彩色物體多光譜圖像的主要思想,是利用多共振構(gòu)原子作為構(gòu)表面構(gòu)建單元。研究人員將鋁(Al)納米棒與專門設(shè)計(jì)的分布式布拉格反射器(DBR)相
    的頭像 發(fā)表于 11-29 16:55 ?661次閱讀
    快照高光譜成像:<b class='flag-5'>超</b><b class='flag-5'>構(gòu)</b>光學(xué)+小數(shù)據(jù)凸優(yōu)化/深度學(xué)習(xí)理論