針對目前國內SDH系統(tǒng)中還沒有一個專門的E1分接復用芯征,本文介紹一種用高級硬件描述語言VHDL及狀態(tài)轉移圖完成該發(fā)接復用器的設計的新型設計方法及其FPGA實現。并給出了用Xilinx FoundaTIon tools EDA軟件設計的電路仿真波形及Spartan XCS30XL完成FPGA實現的結果。
1 數字分接復用器結構原理
本數字分接復用器的功能是:在發(fā)送端把12Mbps經過編碼的有幀結構的Ethernet(以太網)碼流分接為7路標準E1接口速率數據流,SDH 設備再把這7路數據映射到155Mbps的速率去通過光纖傳輸到下一個SDH設備;在接收端由SDH設備從155Mbps的數據流中取出7路標準E1速率數據正確恢復為原來的12Mbps的Ethernet(以太網)碼流。
發(fā)送端12Mbps有幀結構數據幀間由全1空閑碼填充。從數字分接復用器發(fā)送輸出的7路E1數據由于傳輸處理過程中路中不同,必然會造成7路E1數據在傳輸過中的各路時延不一致,這就使得各路數據不同步。在設計中如何在接收端使得7路E1數據同步,從而正確恢復原發(fā)送端12Mbps數據就成了一個難題。針對這一問題制定出了如下的解決方案。
1.1 數字分接器原理框圖及說明
如圖1所示,把數字分接器從總體上劃分為:時鐘產生、幀頭/幀尾檢測、串并變換、固定插零、FIFO插入SYNC五個模塊。
在發(fā)送端,分接器的時鐘產生電路把14Mbps系統(tǒng)時鐘XCLK轉變?yōu)?2Mbps時鐘,用這一時鐘對端口來的12Mbps成幀數據DATAIM做幀頭(1100010001)/幀尾(1000000001)檢測,檢測出幀頭后再做串/并變換操作,這樣就初步完成了分接器的功能。但是,為了使數字復接器能正確復接就需要在分接器輸出的7路數據中分別插入同步頭SYNC(0111111110)。為了使數據和插入的SYNC區(qū)別開來,須要在7路數據中每隔 7bit就固定地插入“0”。這樣,就保證了插入的SYNC不會與正常的掌握相混淆,從而也使得分接出的7路數據變?yōu)闃藴实腅1數據。
1.2 數字復接器原理框圖及說明
數字復接器原理框圖如圖2所示。與分接器相呼應,可把復接器從總體上劃分為:SYNC檢測、SYNC扣除、并/串轉換、扣除零、幀頭/幀尾檢測5個模塊。
在接收端,復接口的SYNC檢測模塊在7路E1數據流中分別檢測出7個SYNC。通過SYNC扣除模塊扣除在分接器中插入的SYNC,并使得7路 E1數據同步。之后,就可以對這7路E1數據進行并/串轉換了。對于轉換后的14Mbps數據還需要扣除在分接器中固定插入的零。根據要求對于 12Mbps的數據再一次做幀頭/幀尾檢測以便在兩幀數據之間插入全“1”的空閑碼。這樣的就正確恢復出發(fā)送端的12Mbps碼流。
在發(fā)送端和接收端所有SYNC的處理都用FIFO技術來實現。電路設計采用硬件高級描述語言VHDL和狀態(tài)機來完成,用FPGA驗證實現。為提高電路的可實現性,設計全部采用D觸發(fā)器和邏輯門來實現,并且綜合約束工具來控制FPGA內部電路的路徑延時。
2 VHDL語言設計相對于傳統(tǒng)設計的優(yōu)點
(1)采用自頂向上(Top Down)的設計方法
與傳統(tǒng)的系統(tǒng)硬件設計從具體的設計單元開始不同,VHDL設計是從系統(tǒng)的總體要求出發(fā),先進行系統(tǒng)建模仿真,仿真通過后再利用VHDL層次化、結構化及行為化的描述方法將各個模塊模型用可實現的VHDL電路描述替換。這對于一個非常大的硬件系統(tǒng)設計從總體上把握設計的可行性是非常重要的。
(2)采用系統(tǒng)的早期仿真
通過對系統(tǒng)建模的早期仿真便于在系統(tǒng)設計的早期發(fā)現設計中潛在的問題,與傳統(tǒng)的自下而上設計的后期仿真相比可大大縮短系統(tǒng)設計的周期。
(3)降低了硬件電路的設計難度
不需要象傳統(tǒng)的設計方法在設計前就要寫出電路的邏輯表達式、真值表及卡諾圖化簡,VHDL在設計計數器的時候只關心計數器的狀態(tài)就可以了。這樣也大大縮短系統(tǒng)設計的周期。這對于時間效益的現代社會是非常重要的。
(4)VHDL設計文檔的靈活性
用VHDL設計硬件電路,主要的設計文件是用VHDL編寫的源程序。如果需要也可以利用EDA軟件轉化為原理圖。另外,它資源量小,便于保存,可以方便地被其它設計所利用,可繼承性好,在源文件中可方便地加入注釋,可讀性好。
3 分接復用器的VHDL及狀態(tài)轉移圖設計
3.1 分接復用器頂層VHDL建模(Top level)及系統(tǒng)功能仿真
(1)系統(tǒng)發(fā)送頂層建模的VHDL端口描述
Library IEEE;
Use IEEE.std_logic_1164.all;--引用庫說明;
EnTIty TRAN_TOP is
Port (RESET : IN STD_LOGIC;--ststem reset signal;
XCLK_IN : IN STD_LOGIC;--14.336MHz input high clock;
DATAIN : IN STD_LOGIC;--12.544MHz input data;
CLK12M :OUT STD_LOGIC;--12.544MHz input clock;
READCLK_OUT:OUT STD_LOGIC;--2.048 MHz output clock;
ROUT:OUT STD_LOGIC_VECTOR(6 downto 0)-2.048 MHz 7 route -output data;
);
end TRAN_TOP;
(2)系統(tǒng)發(fā)送頂層建模的VHDL仿真波形
如圖3所示,送來的10M二進制的一幀數據(DATAIN)為“1100010001(幀頭)1111111111,1111111111,1111111111,11111111,1000000001 (幀尾)”。把分接為7路2M的數據如下:
ROUT0:0,0111111110(插入的SYNC)1011111,0(每7bit固定插入‘0’)10,111…(空閑碼)
ROUT1:0,0111111110(插入的SYNC)1011111,0(每7bit固定插入‘0’)10,111…(空閑碼)
ROUT2:0,0111111110(插入的SYNC)0111111,0(每7bit固定插入‘0’)10,111…(空閑碼)
ROUT3:0,0111111110(插入的SYNC)0111111,0(每7bit固定插入‘0’)10,111…(空閑碼)
ROUT4:0,0111111110(插入的SYNC)0111111,0(每7bit固定插入‘0’)00,111…(空閑碼)
ROUT5:0,0111111110(插入的SYNC)1111111,0(每7bit固定插入‘0’)01,111…(空閑碼)
ROUT6:0,0111111110(插入的SYNC)0111111,0(每7bit固定插入‘0’)0,1111…(空閑碼)
這樣,從仿真波形可知電路完成了每幀二進制10M數據分接為7路2M數據時在每路2M數據中插入SYNC(0111111110)、每7bit固定插入‘0’以及在10M數據每幀分接完后插入全1空閑碼的操作。
(3)系統(tǒng)接收頂層建模的VHDL端口描述
Library IEEE;
Use IEEE.std_logic_1164.all; --引用庫說明;
Entity RCV_TOP is
Port (RESET:IN STD_LOGIC; --system reset signal;
XCLK : IN STD_LOGIC: --14.336MHz input high clock;
CLKIN: IN STD_LOGIC_VECTOR(6 DOWNTO 0); --2.048MHz 7 rout input clock;
DATAIN:IN STD_LOGIC_VECTOR(6 DOWNTO 0); --2.048MHz 7 rout input data;
CLK_OUT:OUT STD-LOGIC; --12.544MHz output clock;
DATAOUT:OUT STD_LOGIC; --12.544MHz output data;
);
end RCV_TOP;
(4)系統(tǒng)接收頂層建模的VHDL仿真波形
如圖4所示。7路包含有SYNC(0111111110)及每7bit插入‘0’的兩幀2M數據通過接收系統(tǒng)被正確地復接為10M數據。HEAD_FLAG和END_FLAG分別為復接幀數據的幀頭幀尾指示信號。
這時的7路仿真數據相互之間的延遲不同,其中第DATAIN0延遲最大(8bit),通過系統(tǒng)仿真可以證明7路2M數據間的延遲差最大可到125bit,遠遠起過技術要求的1~6bit。這樣,從系統(tǒng)上確保了設計的可行性。
3.2 狀態(tài)轉移圖設計方法
為去除毛刺,本設計中的計數器全部采用格雷碼計數器。因為格雷碼計數器從前一個狀態(tài)到后一個狀態(tài)的變化同時只有一位矢量發(fā)生狀態(tài)反轉(如:對于一個 8位計數器它的計數狀態(tài)變化是:000→001→011→010→110→111→101→100),故對它譯碼時可以防止競爭冒險現象,從而消除了電路在譯碼時可能產生的刺。對于有大量狀態(tài)轉移的電路,采用狀態(tài)轉換圖輸入法方便、直觀;在FOUNDATION工具中,狀態(tài)圖輸入又可以轉化為VHDL語言,這又大大提高了電路設計的靈活性。
4 功能仿真、后仿真和FPGA實現
本設計采用自頂向下(top-down)的設計方法。但為確保設計的可行性,對于每一個子模塊都進行了功能仿真和后仿真。用foundation工具做功能仿真時,電路中沒有器件延時和線延遲,只能從電路的功能上驗證設計的正確性;而后仿零點能模擬實際電路中的器件延時和線延時,從而能進一步驗證設計在實際工作中的正確性。最后本設計在FPGA(Xilinx Spartan XCS30TQ144)實現,其工作頻率可達到20MHz,并在SDH系統(tǒng)的光纖環(huán)網上通過了測試。
5 FPGA驗證及問題討論
(1)FPGA驗證時的7路2M數據間的延遲差
為了驗證7路數據在傳輸中有不同延時,分接復用器依然能正常工作,就需要模擬出7路不同的延時來。有三種不同的實現方法來完成:·這7路不同的延時可以在FPGA內中用不同的非門串起來實現;
·可以采用74系列器件在FPGA外部完成不同延時的模擬;
·在FPGA內部用不同級數的D觸發(fā)器來模擬7路不同的延時。
在本設計中采用的是第三種。該方法的好處是易于控制不同路的延時,只要改變不同路中D觸發(fā)器的級數就可以改變7路不同的延時。
(2)為提高分接復用器的傳輸效率,可采用不固定插“0”法,例如HDLC中的插“0”法
(3)可以通過在綜合時進一步加約束來提高分接復用器的工作頻率。
本文中的分接復用器為系統(tǒng)通信提供了靈活的速率選擇??筛鶕煌枰?Mbps為基數來配置各種數據速率。本設計中采用VHDL輸入法及狀態(tài)圖輸入法,大大縮短了設計周期,提高了設計的可靠性,并且大大增加了設計的可移值性。該設計的成功表明硬件描述高級語言(VHDL)是硬件設計的一種十分有效的手段。
評論
查看更多