(一)地址的概念
1)物理地址:CPU地址總線傳來(lái)的地址,由硬件電路控制其具體含義。物理地址中很大一部分是留給內(nèi)存條中的內(nèi)存的,但也常被映射到其他存儲(chǔ)器上(如顯存、BIOS等)。在程序指令中的虛擬地址經(jīng)過(guò)段映射和頁(yè)面映射后,就生成了物理地址,這個(gè)物理地址被放到CPU的地址線上。
物理地址空間,一部分給物理RAM(內(nèi)存)用,一部分給總線用,這是由硬件設(shè)計(jì)來(lái)決定的,因此在32bits地址線的x86處理器中,物理地址空間是2的32次方,即4GB,但物理RAM一般不能上到4GB,因?yàn)檫€有一部分要給總線用(總線上還掛著別的許多設(shè)備)。在PC機(jī)中,一般是把低端物理地址給RAM用,高端物理地址給總線用。
2)總線地址:總線的地址線或在地址周期上產(chǎn)生的信號(hào)。外設(shè)使用的是總線地址,CPU使用的是物理地址。
物理地址與總線地址之間的關(guān)系由系統(tǒng)的設(shè)計(jì)決定的。在x86平臺(tái)上,物理地址就是總線地址,這是因?yàn)樗鼈児蚕硐嗤牡刂房臻g——這句話有點(diǎn)難理解,詳見(jiàn)下面的“獨(dú)立編址”。在其他平臺(tái)上,可能需要轉(zhuǎn)換/映射。比如:CPU需要訪問(wèn)物理地址是0xfa000的單元,那么在x86平臺(tái)上,會(huì)產(chǎn)生一個(gè)PCI總線上對(duì)0xfa000地址的訪問(wèn)。因?yàn)槲锢淼刂泛涂偩€地址相同。
3)虛擬地址:現(xiàn)代操作系統(tǒng)普遍采用虛擬內(nèi)存管理(VirtualMemory Management)機(jī)制,這需要MMU(MemoryManagement Unit)的支持。MMU通常是CPU的一部分,如果處理器沒(méi)有MMU,或者有MMU但沒(méi)有啟用,CPU執(zhí)行單元發(fā)出的內(nèi)存地址將直接傳到芯片引腳上,被內(nèi)存芯片(物理內(nèi)存)接收,這稱為物理地址(Physical Address),如果處理器啟用了MMU,CPU執(zhí)行單元發(fā)出的內(nèi)存地址將被MMU截獲,從CPU到MMU的地址稱為虛擬地址(Virtual Address),而MMU將這個(gè)地址翻譯成另一個(gè)地址發(fā)到CPU芯片的外部地址引腳上,也就是將虛擬地址映射成物理地址。
Linux中,進(jìn)程的4GB(虛擬)內(nèi)存分為用戶空間、內(nèi)核空間。用戶空間分布為0~3GB(即PAGE_OFFSET,在0X86中它等于0xC0000000),剩下的1G為內(nèi)核空間。程序員只能使用虛擬地址。系統(tǒng)中每個(gè)進(jìn)程有各自的私有用戶空間(0~3G),這個(gè)空間對(duì)系統(tǒng)中的其他進(jìn)程是不可見(jiàn)的。
CPU發(fā)出取指令請(qǐng)求時(shí)的地址是當(dāng)前上下文的虛擬地址,MMU再?gòu)捻?yè)表中找到這個(gè)虛擬地址的物理地址,完成取指。同樣讀取數(shù)據(jù)的也是虛擬地址,比如mov ax, var. 編譯時(shí)var就是一個(gè)虛擬地址,也是通過(guò)MMU從也表中來(lái)找到物理地址,再產(chǎn)生總線時(shí)序,完成取數(shù)據(jù)的。
(二)編址方式
1)對(duì)外設(shè)的編址
外設(shè)都是通過(guò)讀寫設(shè)備上的寄存器來(lái)進(jìn)行的,外設(shè)寄存器也稱為“I/O端口”,而IO端口有兩種編址方式:獨(dú)立編址和統(tǒng)一編制。
統(tǒng)一編址:外設(shè)接口中的IO寄存器(即IO端口)與主存單元一樣看待,每個(gè)端口占用一個(gè)存儲(chǔ)單元的地址,將主存的一部分劃出來(lái)用作IO地址空間,如,在 PDP-11中,把最高的4K主存作為IO設(shè)備寄存器地址。端口占用了存儲(chǔ)器的地址空間,使存儲(chǔ)量容量減小。
統(tǒng)一編址也稱為“I/O內(nèi)存”方式,外設(shè)寄存器位于“內(nèi)存空間”(很多外設(shè)有自己的內(nèi)存、緩沖區(qū),外設(shè)的寄存器和內(nèi)存統(tǒng)稱“I/O空間”)。
如,Samsung的S3C2440,是32位ARM處理器,它的4GB地址空間被外設(shè)、RAM等瓜分:
0x8000 1000 LED 8*8點(diǎn)陣的地址
0x4800 0000 ~ 0x6000 0000 SFR(特殊暫存器)地址空間
0x3800 1002 鍵盤地址
0x3000 0000 ~ 0x3400 0000 SDRAM空間
0x2000 0020 ~ 0x2000 002e IDE
0x1900 0300 CS8900
獨(dú)立編址(單獨(dú)編址):IO地址與存儲(chǔ)地址分開(kāi)獨(dú)立編址,I/0端口地址不占用存儲(chǔ)空間的地址范圍,這樣,在系統(tǒng)中就存在了另一種與存儲(chǔ)地址無(wú)關(guān)的IO地址,CPU也必須具有專用與輸入輸出操作的IO指令(IN、OUT等)和控制邏輯。獨(dú)立編址下,地址總線上過(guò)來(lái)一個(gè)地址,設(shè)備不知道是給IO端口的、還是給存儲(chǔ)器的,于是處理器通過(guò)MEMR/MEMW和IOR/IOW兩組控制信號(hào)來(lái)實(shí)現(xiàn)對(duì)I/O端口和存儲(chǔ)器的不同尋址。如,intel80x86就采用單獨(dú)編址,CPU內(nèi)存和I/O是一起編址的,就是說(shuō)內(nèi)存一部分的地址和I/O地址是重疊的。
獨(dú)立編址也稱為“I/O端口”方式,外設(shè)寄存器位于“I/O(地址)空間”。
對(duì)于x86架構(gòu)來(lái)說(shuō),通過(guò)IN/OUT指令訪問(wèn)。PC架構(gòu)一共有65536個(gè)8bit的I/O端口,組成64K個(gè)I/O地址空間,編號(hào)從0~0xFFFF,有16位,80x86用低16位地址線A0-A15來(lái)尋址。連續(xù)兩個(gè)8bit的端口可以組成一個(gè)16bit的端口,連續(xù)4個(gè)組成一個(gè) 32bit的端口。I/O地址空間和CPU的物理地址空間是兩個(gè)不同的概念,例如I/O地址空間為64K,一個(gè)32bit的CPU物理地址空間是4G。如,在Intel 8086+Redhat9.0 下用“more/proc/ioports”可看到:
0000-001f : dma1
0020-003f : pic1
0040-005f : timer
0060-006f : keyboard
0070-007f : rtc
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : ide1
……
不過(guò)Intelx86平臺(tái)普通使用了名為內(nèi)存映射(MMIO)的技術(shù),該技術(shù)是PCI規(guī)范的一部分,IO設(shè)備端口被映射到內(nèi)存空間,映射后,CPU訪問(wèn)IO端口就如同訪問(wèn)內(nèi)存一樣??碔ntelTA 719文檔給出的x86/x64系統(tǒng)典型內(nèi)存地址分配表:
系統(tǒng)資源 占用
BIOS 1M
本地APIC 4K
芯片組保留 2M
IO APIC 4K
PCI設(shè)備 256M
PCI Express設(shè)備256M
PCI設(shè)備(可選) 256M
顯示幀緩存 16M
TSEG 1M
對(duì)于某一既定的系統(tǒng),它要么是獨(dú)立編址、要么是統(tǒng)一編址,具體采用哪一種則取決于CPU的體系結(jié)構(gòu)。如,PowerPC、m68k等采用統(tǒng)一編址,而X86等則采用獨(dú)立編址,存在IO空間的概念。目前,大多數(shù)嵌入式微控制器如ARM、PowerPC等并不提供I/O空間,僅有內(nèi)存空間,可直接用地址、指針訪問(wèn)。但對(duì)于Linux內(nèi)核而言,它可能用于不同的CPU,所以它必須都要考慮這兩種方式,于是它采用一種新的方法,將基于I/O映射方式的或內(nèi)存映射方式的I/O端口通稱為“I/O區(qū)域”(I/O region),不論你采用哪種方式,都要先申請(qǐng)IO區(qū)域:request_resource(),結(jié)束時(shí)釋放它:release_resource()。
(三)不同體系結(jié)構(gòu)編址方式總結(jié)
幾乎每一種外設(shè)都是通過(guò)讀寫設(shè)備上的寄存器來(lái)進(jìn)行的。外設(shè)寄存器也稱為“I/O端口”,通常包括:控制寄存器、狀態(tài)寄存器和數(shù)據(jù)寄存器三大類,而且一個(gè)外設(shè)的寄存器通常被連續(xù)地編址。CPU對(duì)外設(shè)IO端口物理地址的編址方式有兩種:一種是I/O映射方式(I/O-mapped),另一種是內(nèi)存映射方式(Memory-mapped)。而具體采用哪一種則取決于CPU的體系結(jié)構(gòu)。
有些體系結(jié)構(gòu)的CPU(如,PowerPC、m68k等)通常只實(shí)現(xiàn)一個(gè)物理地址空間(RAM)。在這種情況下,外設(shè)I/O端口的物理地址就被映射到CPU的單一物理地址空間中,而成為內(nèi)存的一部分。此時(shí),CPU可以象訪問(wèn)一個(gè)內(nèi)存單元那樣訪問(wèn)外設(shè)I/O端口,而不需要設(shè)立專門的外設(shè)I/O指令。這就是所謂的“內(nèi)存映射方式”(Memory-mapped)。
而另外一些體系結(jié)構(gòu)的CPU(典型地如X86)則為外設(shè)專門實(shí)現(xiàn)了一個(gè)單獨(dú)地地址空間,稱為“I/O地址空間”或者“I/O端口空間”。這是一個(gè)與CPU地RAM物理地址空間不同的地址空間,所有外設(shè)的I/O端口均在這一空間中進(jìn)行編址。CPU通過(guò)設(shè)立專門的I/O指令(如X86的IN和OUT指令)來(lái)訪問(wèn)這一空間中的地址單元(也即I/O端口)。這就是所謂的“I/O映射方式”(I/O-mapped)。與RAM物理地址空間相比,I/O地址空間通常都比較小,如x86 CPU的I/O空間就只有64KB(0-0xffff)。這是“I/O映射方式”的一個(gè)主要缺點(diǎn)。
Linux將基于I/O映射方式的或內(nèi)存映射方式的I/O端口通稱為“I/O區(qū)域”(I/Oregion)。在討論對(duì)I/O區(qū)域的管理之前,我們首先來(lái)分析一下Linux是如何實(shí)現(xiàn)“I/O資源”這一抽象概念的。
(四)IO端口與IO內(nèi)存區(qū)別
在驅(qū)動(dòng)程序編寫過(guò)程中,很少會(huì)注意到IO Port和IO Mem的區(qū)別。雖然使用一些不符合規(guī)范的代碼可以達(dá)到最終目的,這是極其不推薦使用的。
結(jié)合下圖,我們徹底講述IO端口和IO內(nèi)存以及內(nèi)存之間的關(guān)系。主存16M字節(jié)的SDRAM,外設(shè)是個(gè)視頻采集卡,上面有16M字節(jié)的SDRAM作為緩沖區(qū)。
1. CPU是i386架構(gòu)的情況
在i386系列的處理中,內(nèi)存和外部IO是獨(dú)立編址,也是獨(dú)立尋址的。MEM的內(nèi)存空間是32位可以尋址到4G,IO空間是16位可以尋址到64K。
在Linux內(nèi)核中,訪問(wèn)外設(shè)上的IO Port必須通過(guò)IO Port的尋址方式。而訪問(wèn)IO Mem就比較羅嗦,外部MEM不能和主存一樣訪問(wèn),雖然大小上不相上下,可是外部MEM是沒(méi)有在系統(tǒng)中注冊(cè)的。訪問(wèn)外部IO MEM必須通過(guò)remap映射到內(nèi)核的MEM空間后才能訪問(wèn)。
為了達(dá)到接口的同一性,內(nèi)核提供了IO Port到IO Mem的映射函數(shù)。映射后IO Port就可以看作是IO Mem,按照IO Mem的訪問(wèn)方式即可。
2. CPU是ARM 或PPC架構(gòu)的情況
在這一類的嵌入式處理器中,IO Port的尋址方式是采用內(nèi)存映射,也就是IO bus就是Mem bus。系統(tǒng)的尋址能力如果是32位,IO Port+Mem(包括IO Mem)可以達(dá)到4G。
訪問(wèn)這類IO Port時(shí),我們也可以用IO Port專用尋址方式。至于在對(duì)IO Port尋址時(shí),內(nèi)核是具體如何完成的,這個(gè)在內(nèi)核移植時(shí)就已經(jīng)完成。在這種架構(gòu)的處理器中,仍然保持對(duì)IO Port的支持,完全是i386架構(gòu)遺留下來(lái)的問(wèn)題,在此不多討論。而訪問(wèn)IO Mem的方式和i386一致。
3、IO端口和IO內(nèi)存的區(qū)分及聯(lián)系
這兩者如何區(qū)分就涉及到硬件知識(shí),X86體系中,具有兩個(gè)地址空間:IO空間和內(nèi)存空間,而RISC指令系統(tǒng)的CPU(如ARM、PowerPC等)通常只實(shí)現(xiàn)一個(gè)物理地址空間,即內(nèi)存空間。
內(nèi)存空間:內(nèi)存地址尋址范圍,32位操作系統(tǒng)內(nèi)存空間為2的32次冪,即4G。
IO空間:X86特有的一個(gè)空間,與內(nèi)存空間彼此獨(dú)立的地址空間,32位X86有64K的IO空間。
IO端口:當(dāng)寄存器或內(nèi)存位于IO空間時(shí),稱為IO端口。一般寄存器也俗稱I/O端口,或者說(shuō)I/Oports,這個(gè)I/O端口可以被映射在MemorySpace,也可以被映射在I/OSpace。
IO內(nèi)存:當(dāng)寄存器或內(nèi)存位于內(nèi)存空間時(shí),稱為IO內(nèi)存。
(五)在Linux下對(duì)IO端口與IO內(nèi)存訪問(wèn)方式總結(jié)
1)在Linux下訪問(wèn)IO端口
對(duì)于某一既定的系統(tǒng),它要么是獨(dú)立編址、要么是統(tǒng)一編址,具體采用哪一種則取決于CPU的體系結(jié)構(gòu)。如,PowerPC、m68k等采用統(tǒng)一編址,而X86等則采用獨(dú)立編址,存在IO空間的概念。目前,大多數(shù)嵌入式微控制器如ARM、PowerPC等并不提供I/O空間,僅有內(nèi)存空間,可直接用地址、指針訪問(wèn)。但對(duì)于Linux內(nèi)核而言,它可能用于不同的CPU,所以它必須都要考慮這兩種方式,于是它采用一種新的方法,將基于I/O映射方式的或內(nèi)存映射方式的I/O端口通稱為“I/O區(qū)域”(I/O region),不論你采用哪種方式,都要先申請(qǐng)IO區(qū)域:request_resource(),結(jié)束時(shí)釋放它:release_resource()。
IO region是一種IO資源,因此它可以用resource結(jié)構(gòu)類型來(lái)描述。
訪問(wèn)IO端口有2種途徑:I/O映射方式(I/O-mapped)、內(nèi)存映射方式(Memory-mapped)。前一種途徑不映射到內(nèi)存空間,直接使用 intb()/outb()之類的函數(shù)來(lái)讀寫IO端口;后一種MMIO是先把IO端口映射到IO內(nèi)存(“內(nèi)存空間”),再使用訪問(wèn)IO內(nèi)存的函數(shù)來(lái)訪問(wèn) IO端口。
1、I/O映射方式
直接使用IO端口操作函數(shù):在設(shè)備打開(kāi)或驅(qū)動(dòng)模塊被加載時(shí)申請(qǐng)IO端口區(qū)域,之后使用inb(),outb()等進(jìn)行端口訪問(wèn),最后在設(shè)備關(guān)閉或驅(qū)動(dòng)被卸載時(shí)釋放IO端口范圍。
in、out、ins和outs匯編語(yǔ)言指令都可以訪問(wèn)I/O端口。內(nèi)核中包含了以下輔助函數(shù)來(lái)簡(jiǎn)化這種訪問(wèn):
inb( )、inw( )、inl( )
分別從I/O端口讀取1、2或4個(gè)連續(xù)字節(jié)。后綴“b”、“w”、“l(fā)”分別代表一個(gè)字節(jié)(8位)、一個(gè)字(16位)以及一個(gè)長(zhǎng)整型(32位)。
inb_p( )、inw_p( )、inl_p( )
分別從I/O端口讀取1、2或4個(gè)連續(xù)字節(jié),然后執(zhí)行一條“啞元(dummy,即空指令)”指令使CPU暫停。
outb( )、outw( )、outl( )
分別向一個(gè)I/O端口寫入1、2或4個(gè)連續(xù)字節(jié)。
outb_p( )、outw_p( )、outl_p( )
分別向一個(gè)I/O端口寫入1、2或4個(gè)連續(xù)字節(jié),然后執(zhí)行一條“啞元”指令使CPU暫停。
insb( )、insw( )、insl( )
分別從I/O端口讀入以1、2或4個(gè)字節(jié)為一組的連續(xù)字節(jié)序列。字節(jié)序列的長(zhǎng)度由該函數(shù)的參數(shù)給出。
outsb( )、outsw( )、outsl( )
分別向I/O端口寫入以1、2或4個(gè)字節(jié)為一組的連續(xù)字節(jié)序列。
流程如下:
雖然訪問(wèn)I/O端口非常簡(jiǎn)單,但是檢測(cè)哪些I/O端口已經(jīng)分配給I/O設(shè)備可能就不這么簡(jiǎn)單了,對(duì)基于ISA總線的系統(tǒng)來(lái)說(shuō)更是如此。通常,I/O設(shè)備驅(qū)動(dòng)程序?yàn)榱颂綔y(cè)硬件設(shè)備,需要盲目地向某一I/O端口寫入數(shù)據(jù);但是,如果其他硬件設(shè)備已經(jīng)使用這個(gè)端口,那么系統(tǒng)就會(huì)崩潰。為了防止這種情況的發(fā)生,內(nèi)核必須使用“資源”來(lái)記錄分配給每個(gè)硬件設(shè)備的I/O端口。資源表示某個(gè)實(shí)體的一部分,這部分被互斥地分配給設(shè)備驅(qū)動(dòng)程序。在這里,資源表示I/O端口地址的一個(gè)范圍。每個(gè)資源對(duì)應(yīng)的信息存放在resource數(shù)據(jù)結(jié)構(gòu)中:
1. struct resource {
2. resource_size_t start;// 資源范圍的開(kāi)始
3. resource_size_t end;// 資源范圍的結(jié)束
4. const char *name; //資源擁有者的名字
5. unsigned long flags;// 各種標(biāo)志
6. struct resource *parent, *sibling, *child;// 指向資源樹中父親,兄弟和孩子的指針
7. };
所有的同種資源都插入到一個(gè)樹型數(shù)據(jù)結(jié)構(gòu)(父親、兄弟和孩子)中;例如,表示I/O端口地址范圍的所有資源都包括在一個(gè)根節(jié)點(diǎn)為ioport_resource的樹中。節(jié)點(diǎn)的孩子被收集在一個(gè)鏈表中,其第一個(gè)元素由child指向。sibling字段指向鏈表中的下一個(gè)節(jié)點(diǎn)。
為什么使用樹?例如,考慮一下IDE硬盤接口所使用的I/O端口地址-比如說(shuō)從0xf000到 0xf00f。那么,start字段為0xf000且end 字段為0xf00f的這樣一個(gè)資源包含在樹中,控制器的常規(guī)名字存放在name字段中。但是,IDE設(shè)備驅(qū)動(dòng)程序需要記住另外的信息,也就是IDE鏈主盤使用0xf000到0xf007的子范圍,從盤使用0xf008到0xf00f的子范圍。為了做到這點(diǎn),設(shè)備驅(qū)動(dòng)程序把兩個(gè)子范圍對(duì)應(yīng)的孩子插入到從0xf000到0xf00f的整個(gè)范圍對(duì)應(yīng)的資源下。一般來(lái)說(shuō),樹中的每個(gè)節(jié)點(diǎn)肯定相當(dāng)于父節(jié)點(diǎn)對(duì)應(yīng)范圍的一個(gè)子范圍。I/O端口資源樹(ioport_resource)的根節(jié)點(diǎn)跨越了整個(gè)I/O地址空間(從端口0到65535)。
任何設(shè)備驅(qū)動(dòng)程序都可以使用下面三個(gè)函數(shù),傳遞給它們的參數(shù)為資源樹的根節(jié)點(diǎn)和要插入的新資源數(shù)據(jù)結(jié)構(gòu)的地址:
request_resource() //把一個(gè)給定范圍分配給一個(gè)I/O設(shè)備。
allocate_resource() //在資源樹中尋找一個(gè)給定大小和排列方式的可用范圍;若存在,將這個(gè)范圍分配給一個(gè)I/O設(shè)備(主要由PCI設(shè)備驅(qū)動(dòng)程序使用,可以使用任意的端口號(hào)和主板上的內(nèi)存地址對(duì)其進(jìn)行配置)。
release_resource() //釋放以前分配給I/O設(shè)備的給定范圍。
內(nèi)核也為以上函數(shù)定義了一些應(yīng)用于I/O端口的快捷函數(shù):request_region( )分配I/O端口的給定范圍,release_region( )釋放以前分配給I/O端口的范圍。當(dāng)前分配給I/O設(shè)備的所有I/O地址的樹都可以從/proc/ioports文件中獲得。
2、內(nèi)存映射方式
將IO端口映射為內(nèi)存進(jìn)行訪問(wèn),在設(shè)備打開(kāi)或驅(qū)動(dòng)模塊被加載時(shí),申請(qǐng)IO端口區(qū)域并使用ioport_map()映射到內(nèi)存,之后使用IO內(nèi)存的函數(shù)進(jìn)行端口訪問(wèn),最后,在設(shè)備關(guān)閉或驅(qū)動(dòng)模塊被卸載時(shí)釋放IO端口并釋放映射。
映射函數(shù)的原型為:
void *ioport_map(unsigned long port, unsigned int count);
通過(guò)這個(gè)函數(shù),可以把port開(kāi)始的count個(gè)連續(xù)的I/O端口重映射為一段“內(nèi)存空間”。然后就可以在其返回的地址上像訪問(wèn)I/O內(nèi)存一樣訪問(wèn)這些I/O端口。但請(qǐng)注意,在進(jìn)行映射前,還必須通過(guò)request_region()分配I/O端口。
當(dāng)不再需要這種映射時(shí),需要調(diào)用下面的函數(shù)來(lái)撤消:
void ioport_unmap(void *addr);
在設(shè)備的物理地址被映射到虛擬地址之后,盡管可以直接通過(guò)指針訪問(wèn)這些地址,但是宜使用Linux內(nèi)核的如下一組函數(shù)來(lái)完成訪問(wèn)I/O內(nèi)存:讀I/O內(nèi)存
unsigned int ioread8(void *addr);
unsigned int ioread16(void *addr);
unsigned int ioread32(void *addr);
與上述函數(shù)對(duì)應(yīng)的較早版本的函數(shù)為(這些函數(shù)在Linux 2.6中仍然被支持):
unsigned readb(address);
unsigned readw(address);
unsigned readl(address);
·寫I/O內(nèi)存
void iowrite8(u8 value, void *addr);
void iowrite16(u16 value, void *addr);
void iowrite32(u32 value, void *addr);
與上述函數(shù)對(duì)應(yīng)的較早版本的函數(shù)為(這些函數(shù)在Linux 2.6中仍然被支持):
void writeb(unsigned value, address);
void writew(unsigned value, address);
void writel(unsigned value, address);
流程如下:
2)Linux下訪問(wèn)IO內(nèi)存
IO內(nèi)存的訪問(wèn)方法是:首先調(diào)用request_mem_region()申請(qǐng)資源,接著將寄存器地址通過(guò)ioremap()映射到內(nèi)核空間的虛擬地址,之后就可以Linux設(shè)備訪問(wèn)編程接口訪問(wèn)這些寄存器了,訪問(wèn)完成后,使用ioremap()對(duì)申請(qǐng)的虛擬地址進(jìn)行釋放,并釋放release_mem_region()申請(qǐng)的IO內(nèi)存資源。
struct resource*requset_mem_region(unsigned long start, unsigned long len,char *name);
這個(gè)函數(shù)從內(nèi)核申請(qǐng)len個(gè)內(nèi)存地址(在3G~4G之間的虛地址),而這里的start為I/O物理地址,name為設(shè)備的名稱。注意,如果分配成功,則返回非NULL,否則,返回NULL。
另外,可以通過(guò)/proc/iomem查看系統(tǒng)給各種設(shè)備的內(nèi)存范圍。
要釋放所申請(qǐng)的I/O內(nèi)存,應(yīng)當(dāng)使用release_mem_region()函數(shù):
void release_mem_region(unsigned longstart, unsigned long len)
申請(qǐng)一組I/O內(nèi)存后,調(diào)用ioremap()函數(shù):
void* ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags);
其中三個(gè)參數(shù)的含義為:
phys_addr:與requset_mem_region函數(shù)中參數(shù)start相同的I/O物理地址;
size:要映射的空間的大?。?/p>
flags:要映射的IO空間的和權(quán)限有關(guān)的標(biāo)志;
功能:將一個(gè)I/O地址空間映射到內(nèi)核的虛擬地址空間上(通過(guò)requset _mem_region()申請(qǐng)到的)
流程如下:
3)ioremap和ioport_map
下面具體看一下ioport_map和ioport_umap的源碼:
1. void __iomem *ioport_map(unsigned long port, unsigned int nr)
2. {
3. if (port 》 PIO_MASK)
4. return NULL;
5. return (void __iomem *) (unsigned long) (port + PIO_OFFSET);
6. }
7.
8. void ioport_unmap(void __iomem *addr)
9. {
10. /* Nothing to do */
11. }
ioport_map僅僅是將port加上PIO_OFFSET(64k),而ioport_unmap則什么都不做。這樣portio的64k空間就被映射到虛擬地址的64k~128k之間,而ioremap返回的虛擬地址則肯定在3G之上。ioport_map函數(shù)的目的是試圖提供與ioremap一致的虛擬地址空間。分析ioport_map()的源代碼可發(fā)現(xiàn),所謂的映射到內(nèi)存空間行為實(shí)際上是給開(kāi)發(fā)人員制造的一個(gè)“假象”,并沒(méi)有映射到內(nèi)核虛擬地址,僅僅是為了讓工程師可使用統(tǒng)一的I/O內(nèi)存訪問(wèn)接口ioread8/iowrite8(。。.。。.)訪問(wèn)I/O端口。
最后來(lái)看一下ioread8的源碼,其實(shí)現(xiàn)也就是對(duì)虛擬地址進(jìn)行了判斷,以區(qū)分IO端口和IO內(nèi)存,然后分別使用inb/outb和readb/writeb來(lái)讀寫。
1. unsigned int fastcall ioread8(void __iomem *addr)
2. {
3. IO_COND(addr, return inb(port), return readb(addr));
4. }
5.
6. #define VERIFY_PIO(port) BUG_ON((port & ~PIO_MASK) != PIO_OFFSET)
7. #define IO_COND(addr, is_pio, is_mmio) do { \
8. unsigned long port = (unsigned long __force)addr; \
9. if (port 《 PIO_RESERVED) { \
10. VERIFY_PIO(port); \
11. port &= PIO_MASK; \
12. is_pio; \
13. } else { \
14. is_mmio; \
15. } \
16. } while (0)
17.
18. 展開(kāi):
19. unsigned int fastcall ioread8(void __iomem *addr)
20. {
21. unsigned long port = (unsigned long __force)addr;
22. if( port 《 0x40000UL ) {
23. BUG_ON( (port & ~PIO_MASK) != PIO_OFFSET );
24. port &= PIO_MASK;
25. return inb(port);
26. }else{
27. return readb(addr);
28. }
29. }
評(píng)論
查看更多