隨著數(shù)字化設(shè)計(jì)和SoC的日益復(fù)雜,復(fù)位架構(gòu)也變得非常復(fù)雜。在實(shí)施如此復(fù)雜的架構(gòu)時(shí),設(shè)計(jì)人員往往會(huì)犯一些低級(jí)錯(cuò)誤,這些錯(cuò)誤可能會(huì)導(dǎo)致亞穩(wěn)態(tài)、干擾或其他系統(tǒng)功能故障。本文討論了一些復(fù)位設(shè)計(jì)的基本的結(jié)構(gòu)性問(wèn)題。在每個(gè)問(wèn)題的最后,都提出了一些解決方案。
復(fù)位域交叉問(wèn)題
1. 問(wèn)題
在一個(gè)連續(xù)設(shè)計(jì)中,如果源寄存器的異步復(fù)位不同于目標(biāo)寄存器的復(fù)位,并且在起點(diǎn)寄存器的復(fù)位斷言過(guò)程中目標(biāo)寄存器的數(shù)據(jù)輸入發(fā)生異步變化,那么該路徑將被視為異步路徑,盡管源寄存器和目標(biāo)寄存器都位于同一個(gè)時(shí)鐘域,在源寄存器的復(fù)位斷言過(guò)程中可能導(dǎo)致目標(biāo)寄存器出現(xiàn)亞穩(wěn)態(tài)。這被稱為復(fù)位域交叉,其中啟動(dòng)和捕捉觸發(fā)的復(fù)位是不同的。
在這種情況下,C寄存器和A寄存器的起點(diǎn)異步復(fù)位斷言是不同的。在C寄存器復(fù)位斷言過(guò)程中而A觸發(fā)器沒(méi)有復(fù)位,如果A寄存器的輸入端有一些有效數(shù)據(jù)交易,那么C寄存器的起點(diǎn)異步復(fù)位斷言引起的異步變更可能導(dǎo)致目標(biāo)A寄存器發(fā)生時(shí)序違規(guī),從而可能產(chǎn)生亞穩(wěn)態(tài)。
圖1:復(fù)位域交叉問(wèn)題
在上面的時(shí)序圖中,當(dāng)有一些有效數(shù)據(jù)交易通過(guò)C1進(jìn)行時(shí),rst_c_b獲得斷言,導(dǎo)致C1發(fā)生異步改變,w.r.t clk從而使QC1進(jìn)入亞穩(wěn)態(tài),這可能導(dǎo)致設(shè)計(jì)發(fā)生功能故障。
2. 解決方案
* 使用異步復(fù)位、不可復(fù)位觸發(fā)器或D1觸發(fā)器POR.
* 如果復(fù)位源rst_c_b是同步的,那么則認(rèn)為來(lái)自C_CLR --> Q的用于從rst_c_b_reg -->C_CLR-->C_Q1-->C1-->A_D進(jìn)行設(shè)置保持檢查的時(shí)序弧能夠避免設(shè)計(jì)亞穩(wěn)態(tài)。然而,通常在默認(rèn)情況下 C_CLR-->Q時(shí)序弧在庫(kù)中不啟用,需要在定時(shí)分析過(guò)程中明確啟用。
* 在目的地(A)使用雙觸發(fā)器同步器,以避免設(shè)計(jì)中發(fā)生亞穩(wěn)態(tài)傳播。然而,設(shè)計(jì)人員應(yīng)確保安裝兩個(gè)觸發(fā)器引入的延遲不會(huì)影響預(yù)期功能。
由于組合環(huán)路導(dǎo)致復(fù)位源干擾
1. 問(wèn)題
在SoC 中,全局系統(tǒng)復(fù)位在設(shè)備中組合了軟件或硬件生成的各種復(fù)位源。LVD復(fù)位、看門(mén)狗復(fù)位、調(diào)試復(fù)位、軟件復(fù)位、時(shí)鐘丟失復(fù)位是導(dǎo)致全局系統(tǒng)復(fù)位斷言的一些示例。 然而,如果由于任何復(fù)位源導(dǎo)致的全局復(fù)位斷言是完全異步的,且復(fù)位發(fā)生源邏輯被全局復(fù)位清零,那么設(shè)計(jì)中會(huì)產(chǎn)生組合環(huán)路,這會(huì)在該復(fù)位源產(chǎn)生干擾。組合路徑的傳播延遲會(huì)根據(jù)不同的流程、電壓或溫度以及干擾范圍而不同。如果設(shè)計(jì)中使用了組合信元用于復(fù)位斷言和去斷言,那么也會(huì)導(dǎo)致模擬中出現(xiàn)紊亂情況。這被視為設(shè)計(jì)人員的非常低級(jí)的錯(cuò)誤。
圖2:復(fù)位源干擾(基本問(wèn)題)
在上圖中,當(dāng)復(fù)位源SW_Q斷言時(shí),會(huì)導(dǎo)致rst_b斷言,這是全局復(fù)位?,F(xiàn)在,如果全局復(fù)位本身被用于清除 “SW_Q” 復(fù)位斷言,那么會(huì)在設(shè)計(jì)中在SW_Q輸出和全局復(fù)位時(shí)產(chǎn)生干擾。此外,在模擬中,這會(huì)導(dǎo)致紊亂情況,因?yàn)閺?fù)位源斷言試圖通過(guò)該組合邏輯去斷言。
然而,如果復(fù)位源(SW_Q)在復(fù)位狀態(tài)機(jī)(觸發(fā)器的SET/CLR輸入)為全局復(fù)位斷言被異步使用,那么復(fù)位干擾可能能夠復(fù)位整個(gè)系統(tǒng)(通過(guò)斷言全局復(fù)位),因?yàn)槿窒到y(tǒng)復(fù)位去斷言不僅僅與復(fù)位源去斷言相關(guān)。當(dāng)該復(fù)位源(有干擾)被同步使用或在觸發(fā)器D輸入使用的情況下可能依然有一個(gè)問(wèn)題。干擾范圍可能無(wú)法在至少一個(gè)周期內(nèi)保持穩(wěn)定,因此這不會(huì)被目標(biāo)觸發(fā)器捕獲。此外,該復(fù)位源不能被用作任何電路的時(shí)鐘(除了脈沖捕捉電路),因?yàn)樗赡苓`反時(shí)鐘寬度。
圖3:復(fù)位源干擾(問(wèn)題2)
在上圖中,復(fù)位源SW_Q將出現(xiàn)干擾。雖然如果復(fù)位源SW_Q的干擾在某個(gè)觸發(fā)器被捕捉作為復(fù)位事件狀態(tài)(在S)或用于其他目的,全局復(fù)位輸出(rst_b)都沒(méi)有干擾,但它將導(dǎo)致時(shí)序違反/亞穩(wěn)態(tài),或根本不可能被捕獲。
2. 解決方案
* 設(shè)計(jì)人員永遠(yuǎn)都不應(yīng)犯下上述(圖2)低級(jí)錯(cuò)誤。
* 如果復(fù)位實(shí)現(xiàn)如圖3所示,那么設(shè)計(jì)人員應(yīng)保證復(fù)位源(在該示例中為SW_Q)總是在觸發(fā)器的SET/CLR輸入使用,而不在D或CLK使用。
* 解決這個(gè)問(wèn)題的最好的方法是在復(fù)位狀態(tài)機(jī)中使用之前注冊(cè)該復(fù)位源。 雖然它將導(dǎo)致時(shí)鐘依靠全局復(fù)位斷言,但是無(wú)論如何,如果沒(méi)有時(shí)鐘,該內(nèi)部復(fù)位(SW_Q)都不會(huì)斷言。請(qǐng)參見(jiàn)圖4.
圖4:解決方案1
此外,用戶也可以擴(kuò)展SW_Q斷言,然后再在設(shè)計(jì)中使用它,復(fù)位斷言與時(shí)鐘無(wú)關(guān)。 請(qǐng)參見(jiàn)圖5.
圖5:解決方案2
復(fù)位路徑的組合邏輯
1. 問(wèn)題(I)
如果組合邏輯輸入大約在同一時(shí)間發(fā)生變化,那么使用復(fù)位路徑中的組合邏輯可能產(chǎn)生干擾,這可能在設(shè)計(jì)中觸發(fā)虛假?gòu)?fù)位。下面是一個(gè)RTL代碼,它會(huì)在設(shè)計(jì)中意外復(fù)位。
assign module_a_rstb = ?。ǎ╯lave_addr[7:0]==8‘h02 & write_enable & (wdata[7:0]==00))
always @(posedge clk or negedge module_rst_b)
if(!module_rst_b) data_q <= 1’b0;
else data_q <= data_d;
在上面的示例中,slave_addr,write_enable和wdata改變它們的值 w.r.t system clock,使用靜態(tài)時(shí)序分析,設(shè)計(jì)人員可以保證在目標(biāo)觸發(fā)器的設(shè)置時(shí)間窗口之前這些信號(hào)在一個(gè)時(shí)鐘周期內(nèi)的穩(wěn)定性。然而,在該示例中,這些信號(hào)直接用作觸發(fā)器的異步清零輸入。
因此,即使在特定的時(shí)間slave_addr[7:0]在邏輯上將其值從“00000110”改為 “01100000”,但由于組合邏輯的傳播延遲(凈延遲和信元延遲)它可以用一個(gè)序列“00000110 --> 00000010 --> 00000000 --> 01000000 --> 01100000”生成過(guò)渡。
在這段時(shí)間里,salve_addr為“00000010”,如果wdata[7:0]始終為零且“write_enable” 已經(jīng)被斷言,那么它將在module_rst_b創(chuàng)建一個(gè)無(wú)用脈沖,從而導(dǎo)致虛假?gòu)?fù)位。
圖6:復(fù)位路徑的組合邏輯
2. 解決方案
首先注冊(cè)組合輸出,然后再將其用作復(fù)位源(如圖7所示)。
圖7:復(fù)位路徑的組合邏輯解決方案
3. 問(wèn)題(II)
在上面的示例中,復(fù)位路徑的組合邏輯解決方案并不完善。如果組合邏輯輸入大約在同一時(shí)間發(fā)生變化,那么它可能在設(shè)計(jì)中觸發(fā)虛假?gòu)?fù)位。然而,如果組合邏輯的輸入信號(hào)變化相互排斥,那么它可能不會(huì)引起任何設(shè)計(jì)問(wèn)題。例如,測(cè)試模式和功能模式相互排斥。因此復(fù)位路徑的測(cè)試復(fù)用是有效的設(shè)計(jì)實(shí)踐。
然而,對(duì)于某些情況,變化相互排斥的靜態(tài)信號(hào)或信號(hào)可能會(huì)導(dǎo)致設(shè)計(jì)出現(xiàn)虛假?gòu)?fù)位觸發(fā)。下面的示例描述了此類(lèi)設(shè)計(jì)可能出現(xiàn)問(wèn)題。
圖8:復(fù)位路徑的組合邏輯(問(wèn)題 2)
在上面的示例中,多路復(fù)用結(jié)構(gòu)用于復(fù)位路徑,同時(shí)進(jìn)行RTL編碼。其中“mode” 是一個(gè)控制信號(hào),不頻繁改變,而mode0_rst_b和mode_1_rst_b是兩個(gè)復(fù)位事件,然而在合成RTL時(shí),在門(mén)控級(jí)它被分解成不同的復(fù)雜的組合(And-Or-Invert[AOI])信元。雖然在邏輯上它相當(dāng)于一個(gè)多路復(fù)用器,但由于不同的信元和凈延遲,每當(dāng)信號(hào)“mode”從 1-->0變化時(shí),final_rst_b都會(huì)產(chǎn)生干擾。
4. 解決方案
* 在合成過(guò)程中在復(fù)位路徑保留多路復(fù)用結(jié)構(gòu),因?yàn)槎嗦窂?fù)用結(jié)構(gòu)與其他組合邏輯相比易于產(chǎn)生干擾。MUX Pragma可以在編碼RTL時(shí)使用,這將有助于合成工具在復(fù)位路徑中保留任何多路復(fù)用器。
設(shè)計(jì)中的同步復(fù)位問(wèn)題
1. 問(wèn)題(I)
在許多地方,設(shè)計(jì)人員在時(shí)鐘方面喜歡同步復(fù)位設(shè)計(jì)。原因可能是為了節(jié)省一些芯片面積(帶有異步復(fù)位輸入的觸發(fā)器比任何不可復(fù)位觸發(fā)器都大)或讓系統(tǒng)與時(shí)鐘完全同步,也可能有一些其他原因。對(duì)于此類(lèi)設(shè)計(jì),當(dāng)復(fù)位源被斷言時(shí)需要向設(shè)計(jì)的觸發(fā)器提供時(shí)鐘,否則,這些觸發(fā)器可能會(huì)在一段時(shí)間內(nèi)都不進(jìn)行初始化。但當(dāng)該模塊被插入一個(gè)系統(tǒng)時(shí),系統(tǒng)設(shè)計(jì)人員可能選擇在復(fù)位階段禁用其時(shí)鐘(如果在一開(kāi)始不需要激活該模塊),以節(jié)省整個(gè)系統(tǒng)的動(dòng)態(tài)功耗。因此,該模塊甚至在復(fù)位去斷言后一段時(shí)間內(nèi)都不進(jìn)行初始化。如果該模塊的任何輸出直接在系統(tǒng)中使用,那么將捕獲未初始化和未知的值(X),這可能會(huì)導(dǎo)致系統(tǒng)功能故障。
圖9:同步復(fù)位問(wèn)題時(shí)序圖
2. 解決方案
在復(fù)位階段啟用該模塊的時(shí)鐘且持續(xù)最短的時(shí)間,使該模塊內(nèi)的所有觸發(fā)器都在復(fù)位過(guò)程中被初始化。 當(dāng)系統(tǒng)復(fù)位被去斷言時(shí),模塊輸出不會(huì)有任何未初始化的值。
圖10:同步復(fù)位問(wèn)題已解決
3. 問(wèn)題(II)
在時(shí)鐘域交叉路徑使用兩個(gè)觸發(fā)同步器是常見(jiàn)做法。然而,有時(shí)設(shè)計(jì)人員對(duì)這些觸發(fā)器使用同步復(fù)位。相同的RTL代碼是
always @(posedge clk )
if(!sync_rst_b) begin
sync1 <= 1‘b0; sync2 <= 1’b0 ;
end
else begin
sync1 <= async_in; sync2 <= sync1
end
在硬件中進(jìn)行了RTL合成后,上面的代碼會(huì)在雙觸發(fā)器同步器的同步鏈中引入組合邏輯,這會(huì)帶來(lái)風(fēng)險(xiǎn),并縮短sync2觸發(fā)器輸入進(jìn)入亞穩(wěn)態(tài)的時(shí)間。
圖11:同步復(fù)位問(wèn)題2
4. 解決方案
可用以下方式編寫(xiě)RTL代碼,以避免同步鏈的組合邏輯。
always @(posedge clk )
if(!sync_rst_b) begin
sync1 <= 1‘b0;
end
else begin
sync1 <= async_in; sync2 <= sync1
end
在上面的代碼中,對(duì)sync2觸發(fā)器不使用復(fù)位,因此在同步鏈中不會(huì)實(shí)現(xiàn)組合信元。然而,需要注意sync2需要一個(gè)額外的周期才能復(fù)位,這不應(yīng)導(dǎo)致設(shè)計(jì)出現(xiàn)任何問(wèn)題。
冗余復(fù)位同步器引起的問(wèn)題
1. 問(wèn)題
在使用多個(gè)異步時(shí)鐘的設(shè)計(jì)中,設(shè)計(jì)人員需要確保在目標(biāo)寄存器使用的時(shí)鐘方面,異步復(fù)位的同步去斷言,否則可能導(dǎo)致目標(biāo)觸發(fā)器發(fā)生時(shí)序違反,從而產(chǎn)生亞穩(wěn)態(tài)。復(fù)位同步器被用來(lái)復(fù)位去斷言,與目標(biāo)時(shí)鐘域同步。然而,只有在系統(tǒng)復(fù)位去斷言過(guò)程中有目標(biāo)時(shí)鐘時(shí)才會(huì)發(fā)生復(fù)位去斷言時(shí)序違反。如果在復(fù)位去斷言時(shí)沒(méi)有時(shí)鐘,那么便不會(huì)有任何時(shí)序違反。因此,在設(shè)計(jì)多時(shí)鐘域模塊時(shí),設(shè)計(jì)人員可以讓編譯時(shí)間選項(xiàng)繞過(guò)該模塊中的那些復(fù)位同步器,并讓系統(tǒng)集成商根據(jù)對(duì)該模塊的時(shí)鐘可用性決定是否需要使用復(fù)位同步器。
此外,如果系統(tǒng)時(shí)鐘和異步時(shí)鐘比非常高,冗余同步器甚至?xí)斐稍O(shè)計(jì)功能性問(wèn)題。下面描述了這個(gè)問(wèn)題。
圖12:冗余同步器的問(wèn)題
在上面的設(shè)計(jì)中,去斷言與sys clk同步的系統(tǒng)復(fù)位被饋送到(mod_clk域)的復(fù)位同步器,然后在mod_clk域邏輯中使用該復(fù)位。讓我們假定sys clk : mod_clk的時(shí)鐘頻率比大于6:1.默認(rèn)不啟用mod_clk,以節(jié)省動(dòng)態(tài)功率。當(dāng)用戶想要啟用mod_clk域邏輯的功能時(shí),便啟用該時(shí)鐘。在啟用了該時(shí)鐘后,有兩個(gè)mod_clk周期的延遲,其中,由于復(fù)位同步器導(dǎo)致整個(gè)mod_clk域邏輯都處于復(fù)位狀態(tài)。在該階段,如果一些數(shù)據(jù)交易從sys clk域開(kāi)始,將在mod_clk域丟失。
2. 解決方案
雖然這不是大問(wèn)題,但有時(shí)會(huì)在客戶一端造成混淆,因?yàn)樵撗舆t對(duì)客戶不可見(jiàn)。 因此消除混淆的更好的方式是:
* 如果在全局復(fù)位去斷言過(guò)程中沒(méi)有時(shí)鐘,則在設(shè)計(jì)中繞過(guò)/刪除冗余復(fù)位同步器。 這當(dāng)然會(huì)節(jié)省一定的門(mén)控?cái)?shù)。
* 如果動(dòng)態(tài)功耗不是問(wèn)題,用戶可以在mod_clk域邏輯開(kāi)始運(yùn)作之前很長(zhǎng)時(shí)間在啟動(dòng)代碼選擇啟用mod_clk. 因此,復(fù)位去斷言將有足夠的時(shí)間傳播。
* 這也可以在軟件中處理,在任何有效操作之前啟用了mod_clk后,設(shè)置兩三個(gè)mod_clk周期的延遲。
由于罕見(jiàn)的時(shí)鐘路徑導(dǎo)致復(fù)位去斷言時(shí)序問(wèn)題
1. 問(wèn)題
設(shè)計(jì)的復(fù)位架構(gòu)根據(jù)系統(tǒng)而不同。在一些安全關(guān)鍵設(shè)備中,整個(gè)復(fù)位狀態(tài)機(jī)在安全時(shí)鐘上工作,安全時(shí)鐘默認(rèn)啟用。 該時(shí)鐘也被用作設(shè)備的默認(rèn)系統(tǒng)時(shí)鐘。
圖13:罕見(jiàn)時(shí)鐘路徑的問(wèn)題
在上圖中,復(fù)位狀態(tài)機(jī)(R觸發(fā)器)在default_clk上工作。此外,在復(fù)位去斷言過(guò)程中,default_clk是sys clk的源。因此,在邏輯上,這兩個(gè)時(shí)鐘(clk1和clk2)在復(fù)位去斷言過(guò)程中同步。但是,由于clk1和clk2之間存在巨大的罕見(jiàn)路徑,因此很難平衡這兩個(gè)時(shí)鐘并視其為同步。 因此,滿足A觸發(fā)器的復(fù)位去斷言變得具有挑戰(zhàn)性。
2. 解決方案
異步對(duì)待clk1和clk2,并在A觸發(fā)器中使用復(fù)位之前放置復(fù)位同步器?,F(xiàn)在需要從S2--》A滿足復(fù)位去斷言時(shí)序(見(jiàn)圖14)。這不應(yīng)是個(gè)問(wèn)題。
圖14:解決方案
結(jié)束語(yǔ)
這部分主要專(zhuān)注于復(fù)位設(shè)計(jì)中的故障以及克服這些問(wèn)題的可能的解決方案。然而,上述解決方案并非唯一的解決方案,也不普遍適用于所有設(shè)計(jì)。這些是一些通用的解決方案和建議的指導(dǎo)方針,在特殊情況下可能需要進(jìn)行修改。在這些情況下,此類(lèi)問(wèn)題不僅導(dǎo)致功能故障,還會(huì)增加一些額外的調(diào)試時(shí)間和工作,從而增加執(zhí)行周期時(shí)間。因此,設(shè)計(jì)人員需要在設(shè)計(jì)的早期階段考慮此類(lèi)問(wèn)題。
評(píng)論
查看更多