該實驗采用W5500開發(fā)板通過上位機(jī)向開發(fā)板發(fā)送命令來控制外接燈帶的亮度;主要的過程如下:
1 實驗?zāi)康?/h2>
上位機(jī)通過串口發(fā)送格式為:“redbrightness,greenbrightness,bluebrightness”的字符串到MCU。MCU將數(shù)字轉(zhuǎn)化成相應(yīng)的亮度。
2 實驗總體設(shè)計
實驗主要分兩個部分:PWM配置以及串口通信配置。整個實驗的難點(diǎn)在于ASCII碼轉(zhuǎn)換為數(shù)字的過程。
3 PWM產(chǎn)生原理
通用定時器可以利用GPIO引腳進(jìn)行脈沖輸出。要使STM32的通用定時器TIMx產(chǎn)生PWM輸出,需要用到3個寄存器。分別是:捕獲/比較模式寄存器(TIMx_CCMR1/2)、捕獲/比較使能寄存器(TIMx_CCER)、捕獲/比較寄存器(TIMx_CCR1~4)。(注意,還有個TIMx的ARR寄存器是用來控制pwm的輸出頻率)。
對于捕獲/比較模式寄存器(TIMx_CCMR1/2),該寄存器總共有2個,TIMx _CCMR1和TIMx _CCMR2。TIMx_CCMR1控制CH1和2,而TIMx_CCMR2控制CH3和4。其次是捕獲/比較使能寄存器(TIMx_CCER),該寄存器控制著各個輸入輸出通道的開關(guān)。
最后是捕獲/比較寄存器(TIMx_CCR1~4),該寄存器總共有4個,對應(yīng)4個輸通道CH1~4。4個寄存器作用相近,都是用來設(shè)置pwm的占空比的。例如,若配置脈沖計數(shù)器TIMx_CNT為向上計數(shù),而重載寄存器TIMx_ARR被配置為N,即TIMx_CNT的當(dāng)前計數(shù)值數(shù)值X在TIMxCLK時鐘源的驅(qū)動下不斷累加,當(dāng)TIMx_CNT的數(shù)值X大于N時,會重置TIMx_CNT數(shù)值為0重新計數(shù)。而在TIMxCNT計數(shù)的同時,TIMxCNT的計數(shù)值X會與比較寄存器TIMx_CCR預(yù)先存儲了的數(shù)值A(chǔ)進(jìn)行比較,當(dāng)脈沖計數(shù)器TIMx_CNT的數(shù)值X小于比較寄存器TIMx_CCR的值A(chǔ)時,輸出高電平(或低電平),相反地,當(dāng)脈沖計數(shù)器的數(shù)值X大于或等于比較寄存器的值A(chǔ)時,輸出低電平(或高電平)。如此循環(huán),得到的輸出脈沖周期就為重載寄存器TIMx_ARR存儲的數(shù)值(N+1)乘以觸發(fā)脈沖的時鐘周期,其脈沖寬度則為比較寄存器TIMx_CCR的值A(chǔ)乘以觸發(fā)脈沖的時鐘周期,即輸出PWM的占空比為A/(N+1) 。
4 PWM配置步驟
4.1 配置GPIO
void LED_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO, ENABLE);//開啟復(fù)用時鐘
GPIO_InitStructure.GPIO_Pin = LED_RED| LED_BLUE | LED_GREEN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOC, &GPIO_InitStructure);
GPIO_SetBits(GPIOC, LED_RED | LED_BLUE | LED_GREEN);
}
4.2 配置定時器
void TIMER_Config(void)
{
TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
GPIO_PinRemapConfig(GPIO_FullRemap_TIM3, ENABLE);
TIM_BaseInitStructure.TIM_Period = 255;
TIM_BaseInitStructure.TIM_Prescaler = 0;
TIM_BaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_BaseInitStructure);
TIM_ARRPreloadConfig(TIM3, ENABLE);
TIM_Cmd(TIM3, ENABLE);
}
4.3 配置PWM
void PWM_Config(void)
{
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_OCStructInit(&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1; //選擇模式1
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low //極性為高電平有效
TIM_OC2Init(TIM3, &TIM_OCInitStructure);
TIM_OC3Init(TIM3, &TIM_OCInitStructure);
TIM_OC4Init(TIM3, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM3,TIM_OCPreload_Enable);
TIM_OC3PreloadConfig(TIM3,TIM_OCPreload_Enable);
TIM_OC4PreloadConfig(TIM3,TIM_OCPreload_Enable);
TIM_CtrlPWMOutputs(TIM3,ENABLE);
}
4.4 小結(jié)
PWM模式1:
在向上計數(shù)時,一旦TIMx_CNTTIMx_CCR1時通道1為無效電平(OC1REF=0),否則為有效電平(OC1REF=1)。
PWM模式2:
在向上計數(shù)時,一旦TIMx_CNTTIMx_CCR1時通道1為有效電平,否則為無效電平。
同時輸出的有效點(diǎn)評還與極性配置有關(guān):
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
此配置是高電平為有效電平,反之亦然。
5 UART配置步驟
5.1 配置UART1以及對應(yīng)的GPIO
void Usart_Config(uint32_t BaudRate)
{
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
USART_InitStructure.USART_BaudRate = BaudRate;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART_PC, &USART_InitStructure);
USART_ITConfig(USART_PC, USART_IT_RXNE, ENABLE); //開啟串口接收中斷
USART_ITConfig(USART_PC, USART_IT_IDLE, ENABLE); //開啟串口接收中斷
USART_Cmd(USART_PC, ENABLE);
}
5.2 配置中斷
void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
5.3 中斷函數(shù)
void USART1_IRQHandler(void)
{
uint8_t clear = clear;
if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)
{
USART_ClearITPendingBit(USART1, USART_IT_RXNE);
RxBuffer[RxCounter++] = USART_ReceiveData(USART1);
}
else if(USART_GetITStatus(USART1, USART_IT_IDLE) != RESET)
{
clear = USART1-》SR;
clear = USART1-》DR; //先讀SR再讀DR,為了清除IDLE中斷
RxNumber = RxCounter;
RxCounter = 0; //計數(shù)清零
IDLE_Flag = 1; //標(biāo)記接收到一幀的數(shù)據(jù)
}
}
5.4 小結(jié)
STM32單片機(jī)可以實現(xiàn)接收不定長度字節(jié)數(shù)據(jù)。由于STM32單片機(jī)帶IDLE中斷,利用這個中斷,可以接收不定長字節(jié)的數(shù)據(jù)。由于STM32屬于ARM單片機(jī),所以這篇文章的方法也適合其他的ARM單片機(jī)。
IDLE就是串口收到一幀數(shù)據(jù)后,發(fā)生的中斷。比如說給單片機(jī)一次發(fā)來1個字節(jié),或者一次發(fā)來8個字節(jié),這些一次發(fā)來的數(shù)據(jù),就稱為一幀數(shù)據(jù),也可以叫做一包數(shù)據(jù)。 一幀數(shù)據(jù)結(jié)束后,就會產(chǎn)生IDLE中斷。這個中斷十分有用,可以省去了好多判斷的麻煩。
6 ASCII碼轉(zhuǎn)換為數(shù)字
6.1 實現(xiàn)步驟:
while(RxBuffer[i] != ‘,’){ i++; len++;}//如果不為‘,’長度加1
for(j=i-len; j
value = RxBuffer[j]&0x0f; //將ascii碼轉(zhuǎn)換為數(shù)字
pwm_red += value * Power(len-1);
len--;
}
i++;
len = 0;
while(RxBuffer[i] != ‘,’){ i++; len++;}
for(j=i-len; j
value = RxBuffer[j]&0x0f; //將ascii碼轉(zhuǎn)換為數(shù)字
pwm_green += value * Power(len-1);
len--;
}
i++;
len = 0;
while(RxBuffer[i] != ‘\0’){ i++; len++;}
for(j=i-len; j
value = RxBuffer[j]&0x0f; //將ascii碼轉(zhuǎn)換為數(shù)字
pwm_blue += value * Power(len-1);
len--;
}
RedOutput(pwm_red);
GreenOutput(pwm_green);
BlueOutput(pwm_blue);
pwm_red = 0;
pwm_green = 0;
pwm_blue = 0;
for(i=0; i《11; i++) RxBuffer[i] = NULL;//清除數(shù)組
i = 0;
len = 0;
}
}
}
6.2 10的n次方函數(shù)
uint8_t Power(uint8_t pow)
{
uint8_t i;
uint8_t sum = 1;
for(i=0; i
return sum;
}
評論
查看更多