摘要: 本文主要和大家分享如何使用Tensorflow從頭開始構(gòu)建和訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò)。這樣就可以將這個知識作為一個構(gòu)建塊來創(chuàng)造有趣的深度學(xué)習(xí)應(yīng)用程序了。
0. 簡介
在過去,我寫的主要都是“傳統(tǒng)類”的機(jī)器學(xué)習(xí)文章,如樸素貝葉斯分類、邏輯回歸和Perceptron算法。在過去的一年中,我一直在研究深度學(xué)習(xí)技術(shù),因此,我想和大家分享一下如何使用Tensorflow從頭開始構(gòu)建和訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò)。這樣,我們以后就可以將這個知識作為一個構(gòu)建塊來創(chuàng)造有趣的深度學(xué)習(xí)應(yīng)用程序了。
為此,你需要安裝Tensorflow(請參閱安裝說明),你還應(yīng)該對Python編程和卷積神經(jīng)網(wǎng)絡(luò)背后的理論有一個基本的了解。安裝完Tensorflow之后,你可以在不依賴GPU的情況下運行一個較小的神經(jīng)網(wǎng)絡(luò),但對于更深層次的神經(jīng)網(wǎng)絡(luò),就需要用到GPU的計算能力了。
在互聯(lián)網(wǎng)上有很多解釋卷積神經(jīng)網(wǎng)絡(luò)工作原理方面的網(wǎng)站和課程,其中有一些還是很不錯的,圖文并茂、易于理解[]。我在這里就不再解釋相同的東西,所以在開始閱讀下文之前,請?zhí)崆傲私饩矸e神經(jīng)網(wǎng)絡(luò)的工作原理。例如:
什么是卷積層,卷積層的過濾器是什么?
什么是激活層(ReLu層(應(yīng)用最廣泛的)、S型激活或tanh)?
什么是池層(最大池/平均池),什么是dropout?
隨機(jī)梯度下降的工作原理是什么?
本文內(nèi)容如下:
Tensorflow基礎(chǔ)
1.1 常數(shù)和變量
1.2 Tensorflow中的圖和會話
1.3 占位符和feed_dicts
Tensorflow中的神經(jīng)網(wǎng)絡(luò)
2.1 介紹
2.2 數(shù)據(jù)加載
2.3 創(chuàng)建一個簡單的一層神經(jīng)網(wǎng)絡(luò)
2.4 Tensorflow的多個方面
2.5 創(chuàng)建LeNet5卷積神經(jīng)網(wǎng)絡(luò)
2.6 影響層輸出大小的參數(shù)
2.7 調(diào)整LeNet5架構(gòu)
2.8 學(xué)習(xí)速率和優(yōu)化器的影響
Tensorflow中的深度神經(jīng)網(wǎng)絡(luò)
3.1 AlexNet
3.2 VGG Net-16
3.3 AlexNet性能
結(jié)語
1. Tensorflow 基礎(chǔ)
在這里,我將向以前從未使用過Tensorflow的人做一個簡單的介紹。如果你想要立即開始構(gòu)建神經(jīng)網(wǎng)絡(luò),或者已經(jīng)熟悉Tensorflow,可以直接跳到第2節(jié)。如果你想了解更多有關(guān)Tensorflow的信息,你還可以查看這個代碼庫,或者閱讀斯坦福大學(xué)CS20SI課程的講義1和講義2。
1.1 常量與變量
Tensorflow中最基本的單元是常量、變量和占位符。
tf.constant()和tf.Variable()之間的區(qū)別很清楚;一個常量有著恒定不變的值,一旦設(shè)置了它,它的值不能被改變。而變量的值可以在設(shè)置完成后改變,但變量的數(shù)據(jù)類型和形狀無法改變。
#We can create constants and variables of different types.
#However, the different types do not mix well together.
a = tf.constant(2, tf.int16)
b = tf.constant(4, tf.float32)
c = tf.constant(8, tf.float32)
d = tf.Variable(2, tf.int16)
e = tf.Variable(4, tf.float32)
f = tf.Variable(8, tf.float32)
#we can perform computations on variable of the same type: e + f
#but the following can not be done: d + e
#everything in Tensorflow is a tensor, these can have different dimensions:
#0D, 1D, 2D, 3D, 4D, or nD-tensors
g = tf.constant(np.zeros(shape=(2,2), dtype=np.float32)) #does work
h = tf.zeros([11], tf.int16)
i = tf.ones([2,2], tf.float32)
j = tf.zeros([1000,4,3], tf.float64)
k = tf.Variable(tf.zeros([2,2], tf.float32))
l = tf.Variable(tf.zeros([5,6,5], tf.float32))
除了tf.zeros()和tf.ones()能夠創(chuàng)建一個初始值為0或1的張量(見這里)之外,還有一個tf.random_normal()函數(shù),它能夠創(chuàng)建一個包含多個隨機(jī)值的張量,這些隨機(jī)值是從正態(tài)分布中隨機(jī)抽取的(默認(rèn)的分布均值為0.0,標(biāo)準(zhǔn)差為1.0)。
另外還有一個tf.truncated_normal()函數(shù),它創(chuàng)建了一個包含從截斷的正態(tài)分布中隨機(jī)抽取的值的張量,其中下上限是標(biāo)準(zhǔn)偏差的兩倍。
有了這些知識,我們就可以創(chuàng)建用于神經(jīng)網(wǎng)絡(luò)的權(quán)重矩陣和偏差向量了。
weights = tf.Variable(tf.truncated_normal([256 * 256, 10]))
biases = tf.Variable(tf.zeros([10]))
print(weights.get_shape().as_list())
print(biases.get_shape().as_list())
>>>[65536, 10]
>>>[10]
1.2 Tensorflow 中的圖與會話
在Tensorflow中,所有不同的變量以及對這些變量的操作都保存在圖(Graph)中。在構(gòu)建了一個包含針對模型的所有計算步驟的圖之后,就可以在會話(Session)中運行這個圖了。會話可以跨CPU和GPU分配所有的計算。
graph = tf.Graph()
with graph.as_default():
a = tf.Variable(8, tf.float32)
b = tf.Variable(tf.zeros([2,2], tf.float32))
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print(f)
print(session.run(f))
print(session.run(k))
>>>
>>> 8
>>> [[ 0. 0.]
>>> [ 0. 0.]]
1.3 占位符 與 feed_dicts
我們已經(jīng)看到了用于創(chuàng)建常量和變量的各種形式。Tensorflow中也有占位符,它不需要初始值,僅用于分配必要的內(nèi)存空間。 在一個會話中,這些占位符可以通過feed_dict填入(外部)數(shù)據(jù)。
以下是占位符的使用示例。
list_of_points1_ = [[1,2], [3,4], [5,6], [7,8]]
list_of_points2_ = [[15,16], [13,14], [11,12], [9,10]]
list_of_points1 = np.array([np.array(elem).reshape(1,2) for elem in list_of_points1_])
list_of_points2 = np.array([np.array(elem).reshape(1,2) for elem in list_of_points2_])
graph = tf.Graph()
with graph.as_default():
#we should use a tf.placeholder() to create a variable whose value you will fill in later (during session.run()).
#this can be done by 'feeding' the data into the placeholder.
#below we see an example of a method which uses two placeholder arrays of size [2,1] to calculate the eucledian distance
point1 = tf.placeholder(tf.float32, shape=(1, 2))
point2 = tf.placeholder(tf.float32, shape=(1, 2))
def calculate_eucledian_distance(point1, point2):
difference = tf.subtract(point1, point2)
power2 = tf.pow(difference, tf.constant(2.0, shape=(1,2)))
add = tf.reduce_sum(power2)
eucledian_distance = tf.sqrt(add)
return eucledian_distance
dist = calculate_eucledian_distance(point1, point2)
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
for ii in range(len(list_of_points1)):
point1_ = list_of_points1[ii]
point2_ = list_of_points2[ii]
feed_dict = {point1 : point1_, point2 : point2_}
distance = session.run([dist], feed_dict=feed_dict)
print("the distance between {} and {} -> {}".format(point1_, point2_, distance))
>>> the distance between [[1 2]] and [[15 16]] -> [19.79899]
>>> the distance between [[3 4]] and [[13 14]] -> [14.142136]
>>> the distance between [[5 6]] and [[11 12]] -> [8.485281]
>>> the distance between [[7 8]] and [[ 9 10]] -> [2.8284271]
2. Tensorflow 中的神經(jīng)網(wǎng)絡(luò)
2.1 簡介
?
包含神經(jīng)網(wǎng)絡(luò)的圖(如上圖所示)應(yīng)包含以下步驟:
1. 輸入數(shù)據(jù)集:訓(xùn)練數(shù)據(jù)集和標(biāo)簽、測試數(shù)據(jù)集和標(biāo)簽(以及驗證數(shù)據(jù)集和標(biāo)簽)。 測試和驗證數(shù)據(jù)集可以放在tf.constant()中。而訓(xùn)練數(shù)據(jù)集被放在tf.placeholder()中,這樣它可以在訓(xùn)練期間分批輸入(隨機(jī)梯度下降)。
2. 神經(jīng)網(wǎng)絡(luò)**模型**及其所有的層。這可以是一個簡單的完全連接的神經(jīng)網(wǎng)絡(luò),僅由一層組成,或者由5、9、16層組成的更復(fù)雜的神經(jīng)網(wǎng)絡(luò)。
3. 權(quán)重矩陣和**偏差矢量**以適當(dāng)?shù)男螤钸M(jìn)行定義和初始化。(每層一個權(quán)重矩陣和偏差矢量)
4. 損失值:模型可以輸出分對數(shù)矢量(估計的訓(xùn)練標(biāo)簽),并通過將分對數(shù)與實際標(biāo)簽進(jìn)行比較,計算出損失值(具有交叉熵函數(shù)的softmax)。損失值表示估計訓(xùn)練標(biāo)簽與實際訓(xùn)練標(biāo)簽的接近程度,并用于更新權(quán)重值。
5. 優(yōu)化器:它用于將計算得到的損失值來更新反向傳播算法中的權(quán)重和偏差。
2.2 數(shù)據(jù)加載
下面我們來加載用于訓(xùn)練和測試神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)集。為此,我們要下載MNIST和CIFAR-10數(shù)據(jù)集。 MNIST數(shù)據(jù)集包含了6萬個手寫數(shù)字圖像,其中每個圖像大小為28 x 28 x 1(灰度)。 CIFAR-10數(shù)據(jù)集也包含了6萬個圖像(3個通道),大小為32 x 32 x 3,包含10個不同的物體(飛機(jī)、汽車、鳥、貓、鹿、狗、青蛙、馬、船、卡車)。 由于兩個數(shù)據(jù)集中都有10個不同的對象,所以這兩個數(shù)據(jù)集都包含10個標(biāo)簽。
?
首先,我們來定義一些方便載入數(shù)據(jù)和格式化數(shù)據(jù)的方法。
def randomize(dataset, labels):
permutation = np.random.permutation(labels.shape[0])
shuffled_dataset = dataset[permutation, :, :]
shuffled_labels = labels[permutation]
return shuffled_dataset, shuffled_labels
def one_hot_encode(np_array):
return (np.arange(10) == np_array[:,None]).astype(np.float32)
def reformat_data(dataset, labels, image_width, image_height, image_depth):
np_dataset_ = np.array([np.array(image_data).reshape(image_width, image_height, image_depth) for image_data in dataset])
np_labels_ = one_hot_encode(np.array(labels, dtype=np.float32))
np_dataset, np_labels = randomize(np_dataset_, np_labels_)
return np_dataset, np_labels
def flatten_tf_array(array):
shape = array.get_shape().as_list()
return tf.reshape(array, [shape[0], shape[1] shape[2] shape[3]])
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0])
這些方法可用于對標(biāo)簽進(jìn)行獨熱碼編碼、將數(shù)據(jù)加載到隨機(jī)數(shù)組中、扁平化矩陣(因為完全連接的網(wǎng)絡(luò)需要一個扁平矩陣作為輸入):
在我們定義了這些必要的函數(shù)之后,我們就可以這樣加載MNIST和CIFAR-10數(shù)據(jù)集了:
mnist_folder = './data/mnist/'
mnist_image_width = 28
mnist_image_height = 28
mnist_image_depth = 1
mnist_num_labels = 10
mndata = MNIST(mnist_folder)
mnist_train_dataset_, mnist_train_labels_ = mndata.load_training()
mnist_test_dataset_, mnist_test_labels_ = mndata.load_testing()
mnist_train_dataset, mnist_train_labels = reformat_data(mnist_train_dataset_, mnist_train_labels_, mnist_image_size, mnist_image_size, mnist_image_depth)
mnist_test_dataset, mnist_test_labels = reformat_data(mnist_test_dataset_, mnist_test_labels_, mnist_image_size, mnist_image_size, mnist_image_depth)
print("There are {} images, each of size {}".format(len(mnist_train_dataset), len(mnist_train_dataset[0])))
print("Meaning each image has the size of 28281 = {}".format(mnist_image_sizemnist_image_size1))
print("The training set contains the following {} labels: {}".format(len(np.unique(mnist_train_labels_)), np.unique(mnist_train_labels_)))
print('Training set shape', mnist_train_dataset.shape, mnist_train_labels.shape)
print('Test set shape', mnist_test_dataset.shape, mnist_test_labels.shape)
train_dataset_mnist, train_labels_mnist = mnist_train_dataset, mnist_train_labels
test_dataset_mnist, test_labels_mnist = mnist_test_dataset, mnist_test_labels
######################################################################################
cifar10_folder = './data/cifar10/'
train_datasets = ['data_batch_1', 'data_batch_2', 'data_batch_3', 'data_batch_4', 'data_batch_5', ]
test_dataset = ['test_batch']
c10_image_height = 32
c10_image_width = 32
c10_image_depth = 3
c10_num_labels = 10
with open(cifar10_folder + test_dataset[0], 'rb') as f0:
c10_test_dict = pickle.load(f0, encoding='bytes')
c10_test_dataset, c10_test_labels = c10_test_dict[b'data'], c10_test_dict[b'labels']
test_dataset_cifar10, test_labels_cifar10 = reformat_data(c10_test_dataset, c10_test_labels, c10_image_size, c10_image_size, c10_image_depth)
c10_train_dataset, c10_train_labels = [], []
for train_dataset in train_datasets:
with open(cifar10_folder + train_dataset, 'rb') as f0:
c10_train_dict = pickle.load(f0, encoding='bytes')
c10_train_dataset_, c10_train_labels_ = c10_train_dict[b'data'], c10_train_dict[b'labels']
c10_train_dataset.append(c10_train_dataset_)
c10_train_labels += c10_train_labels_
c10_train_dataset = np.concatenate(c10_train_dataset, axis=0)
train_dataset_cifar10, train_labels_cifar10 = reformat_data(c10_train_dataset, c10_train_labels, c10_image_size, c10_image_size, c10_image_depth)
del c10_train_dataset
del c10_train_labels
print("The training set contains the following labels: {}".format(np.unique(c10_train_dict[b'labels'])))
print('Training set shape', train_dataset_cifar10.shape, train_labels_cifar10.shape)
print('Test set shape', test_dataset_cifar10.shape, test_labels_cifar10.shape)
你可以從Yann LeCun的網(wǎng)站下載MNIST數(shù)據(jù)集。下載并解壓縮之后,可以使用python-mnist?工具來加載數(shù)據(jù)。 CIFAR-10數(shù)據(jù)集可以從這里下載。
2.3 創(chuàng)建一個簡單的一層神經(jīng)網(wǎng)絡(luò)
神經(jīng)網(wǎng)絡(luò)最簡單的形式是一層線性全連接神經(jīng)網(wǎng)絡(luò)(FCNN, Fully Connected Neural Network)。 在數(shù)學(xué)上它由一個矩陣乘法組成。
最好是在Tensorflow中從這樣一個簡單的NN開始,然后再去研究更復(fù)雜的神經(jīng)網(wǎng)絡(luò)。 當(dāng)我們研究那些更復(fù)雜的神經(jīng)網(wǎng)絡(luò)的時候,只是圖的模型(步驟2)和權(quán)重(步驟3)發(fā)生了改變,其他步驟仍然保持不變。
我們可以按照如下代碼制作一層FCNN:
image_width = mnist_image_width
image_height = mnist_image_height
image_depth = mnist_image_depth
num_labels = mnist_num_labels
#the dataset
train_dataset = mnist_train_dataset
train_labels = mnist_train_labels
test_dataset = mnist_test_dataset
test_labels = mnist_test_labels
#number of iterations and learning rate
num_steps = 10001
display_step = 1000
learning_rate = 0.5
graph = tf.Graph()
with graph.as_default():
#1) First we put the input data in a Tensorflow friendly form.
tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_width, image_height, image_depth))
tf_train_labels = tf.placeholder(tf.float32, shape = (batch_size, num_labels))
tf_test_dataset = tf.constant(test_dataset, tf.float32)
#2) Then, the weight matrices and bias vectors are initialized
#as a default, tf.truncated_normal() is used for the weight matrix and tf.zeros() is used for the bias vector.
weights = tf.Variable(tf.truncated_normal([image_width image_height image_depth, num_labels]), tf.float32)
bias = tf.Variable(tf.zeros([num_labels]), tf.float32)
#3) define the model:
#A one layered fccd simply consists of a matrix multiplication
def model(data, weights, bias):
return tf.matmul(flatten_tf_array(data), weights) + bias
logits = model(tf_train_dataset, weights, bias)
#4) calculate the loss, which will be used in the optimization of the weights
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf_train_labels))
#5) Choose an optimizer. Many are available.
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
#6) The predicted values for the images in the train dataset and test dataset are assigned to the variables train_prediction and test_prediction.
#It is only necessary if you want to know the accuracy by comparing it with the actual values.
train_prediction = tf.nn.softmax(logits)
test_prediction = tf.nn.softmax(model(tf_test_dataset, weights, bias))
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print('Initialized')
for step in range(num_steps):
_, l, predictions = session.run([optimizer, loss, train_prediction])
if (step % display_step == 0):
train_accuracy = accuracy(predictions, train_labels[:, :])
test_accuracy = accuracy(test_prediction.eval(), test_labels)
message = "step {:04d} : loss is {:06.2f}, accuracy on training set {:02.2f} %, accuracy on test set {:02.2f} %".format(step, l, train_accuracy, test_accuracy)
print(message)
>>> Initialized
>>> step 0000 : loss is 2349.55, accuracy on training set 10.43 %, accuracy on test set 34.12 %
>>> step 0100 : loss is 3612.48, accuracy on training set 89.26 %, accuracy on test set 90.15 %
>>> step 0200 : loss is 2634.40, accuracy on training set 91.10 %, accuracy on test set 91.26 %
>>> step 0300 : loss is 2109.42, accuracy on training set 91.62 %, accuracy on test set 91.56 %
>>> step 0400 : loss is 2093.56, accuracy on training set 91.85 %, accuracy on test set 91.67 %
>>> step 0500 : loss is 2325.58, accuracy on training set 91.83 %, accuracy on test set 91.67 %
>>> step 0600 : loss is 22140.44, accuracy on training set 68.39 %, accuracy on test set 75.06 %
>>> step 0700 : loss is 5920.29, accuracy on training set 83.73 %, accuracy on test set 87.76 %
>>> step 0800 : loss is 9137.66, accuracy on training set 79.72 %, accuracy on test set 83.33 %
>>> step 0900 : loss is 15949.15, accuracy on training set 69.33 %, accuracy on test set 77.05 %
>>> step 1000 : loss is 1758.80, accuracy on training set 92.45 %, accuracy on test set 91.79 %
在圖中,我們加載數(shù)據(jù),定義權(quán)重矩陣和模型,從分對數(shù)矢量中計算損失值,并將其傳遞給優(yōu)化器,該優(yōu)化器將更新迭代“num_steps”次數(shù)的權(quán)重。
在上述完全連接的NN中,我們使用了梯度下降優(yōu)化器來優(yōu)化權(quán)重。然而,有很多不同的優(yōu)化器可用于Tensorflow。 最常用的優(yōu)化器有GradientDescentOptimizer、AdamOptimizer和AdaGradOptimizer,所以如果你正在構(gòu)建一個CNN的話,我建議你試試這些。
Sebastian Ruder有一篇不錯的博文介紹了不同優(yōu)化器之間的區(qū)別,通過這篇文章,你可以更詳細(xì)地了解它們。
2.4 Tensorflow的幾個方面
Tensorflow包含許多層,這意味著可以通過不同的抽象級別來完成相同的操作。這里有一個簡單的例子,操作
logits = tf.matmul(tf_train_dataset, weights) + biases,
也可以這樣來實現(xiàn)
logits = tf.nn.xw_plus_b(train_dataset, weights, biases)。
這是layers API中最明顯的一層,它是一個具有高度抽象性的層,可以很容易地創(chuàng)建由許多不同層組成的神經(jīng)網(wǎng)絡(luò)。例如,或函數(shù)用于創(chuàng)建卷積和完全連接的層。通過這些函數(shù),可以將層數(shù)、過濾器的大小或深度、激活函數(shù)的類型等指定為參數(shù)。然后,權(quán)重矩陣和偏置矩陣會自動創(chuàng)建,一起創(chuàng)建的還有激活函數(shù)和丟棄正則化層(dropout regularization laye)。
例如,通過使用 層API,下面這些代碼:
import Tensorflow as tf
w1 = tf.Variable(tf.truncated_normal([filter_size, filter_size, image_depth, filter_depth], stddev=0.1))
b1 = tf.Variable(tf.zeros([filter_depth]))
layer1_conv = tf.nn.conv2d(data, w1, [1, 1, 1, 1], padding='SAME')
layer1_relu = tf.nn.relu(layer1_conv + b1)
layer1_pool = tf.nn.max_pool(layer1_pool, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
可以替換為
from tflearn.layers.conv import conv_2d, max_pool_2d
layer1_conv = conv_2d(data, filter_depth, filter_size, activation='relu')
layer1_pool = max_pool_2d(layer1_conv_relu, 2, strides=2)
可以看到,我們不需要定義權(quán)重、偏差或激活函數(shù)。尤其是在你建立一個具有很多層的神經(jīng)網(wǎng)絡(luò)的時候,這樣可以保持代碼的清晰和整潔。
然而,如果你剛剛接觸Tensorflow的話,學(xué)習(xí)如何構(gòu)建不同種類的神經(jīng)網(wǎng)絡(luò)并不合適,因為tflearn做了所有的工作。
因此,我們不會在本文中使用層API,但是一旦你完全理解了如何在Tensorflow中構(gòu)建神經(jīng)網(wǎng)絡(luò),我還是建議你使用它。
2.5 創(chuàng)建 LeNet5 卷積神經(jīng)網(wǎng)絡(luò)
下面我們將開始構(gòu)建更多層的神經(jīng)網(wǎng)絡(luò)。例如LeNet5卷積神經(jīng)網(wǎng)絡(luò)。
LeNet5 CNN架構(gòu)最早是在1998年由Yann Lecun(見論文)提出的。它是最早的CNN之一,專門用于對手寫數(shù)字進(jìn)行分類。盡管它在由大小為28 x 28的灰度圖像組成的MNIST數(shù)據(jù)集上運行良好,但是如果用于其他包含更多圖片、更大分辨率以及更多類別的數(shù)據(jù)集時,它的性能會低很多。對于這些較大的數(shù)據(jù)集,更深的ConvNets(如AlexNet、VGGNet或ResNet)會表現(xiàn)得更好。
但由于LeNet5架構(gòu)僅由5個層構(gòu)成,因此,學(xué)習(xí)如何構(gòu)建CNN是一個很好的起點。
Lenet5架構(gòu)如下圖所示:
?
我們可以看到,它由5個層組成:
第1層:卷積層,包含S型激活函數(shù),然后是平均池層。
第2層:卷積層,包含S型激活函數(shù),然后是平均池層。
第3層:一個完全連接的網(wǎng)絡(luò)(S型激活)
第4層:一個完全連接的網(wǎng)絡(luò)(S型激活)
第5層:輸出層
這意味著我們需要創(chuàng)建5個權(quán)重和偏差矩陣,我們的模型將由12行代碼組成(5個層 + 2個池 + 4個激活函數(shù) + 1個扁平層)。
由于這個還是有一些代碼量的,因此最好在圖之外的一個單獨函數(shù)中定義這些代碼。
LENET5_BATCH_SIZE = 32
LENET5_PATCH_SIZE = 5
LENET5_PATCH_DEPTH_1 = 6
LENET5_PATCH_DEPTH_2 = 16
LENET5_NUM_HIDDEN_1 = 120
LENET5_NUM_HIDDEN_2 = 84
def variables_lenet5(patch_size = LENET5_PATCH_SIZE, patch_depth1 = LENET5_PATCH_DEPTH_1,
patch_depth2 = LENET5_PATCH_DEPTH_2,
num_hidden1 = LENET5_NUM_HIDDEN_1, num_hidden2 = LENET5_NUM_HIDDEN_2,
image_depth = 1, num_labels = 10):
w1 = tf.Variable(tf.truncated_normal([patch_size, patch_size, image_depth, patch_depth1], stddev=0.1))
b1 = tf.Variable(tf.zeros([patch_depth1]))
w2 = tf.Variable(tf.truncated_normal([patch_size, patch_size, patch_depth1, patch_depth2], stddev=0.1))
b2 = tf.Variable(tf.constant(1.0, shape=[patch_depth2]))
w3 = tf.Variable(tf.truncated_normal([55patch_depth2, num_hidden1], stddev=0.1))
b3 = tf.Variable(tf.constant(1.0, shape = [num_hidden1]))
w4 = tf.Variable(tf.truncated_normal([num_hidden1, num_hidden2], stddev=0.1))
b4 = tf.Variable(tf.constant(1.0, shape = [num_hidden2]))
w5 = tf.Variable(tf.truncated_normal([num_hidden2, num_labels], stddev=0.1))
b5 = tf.Variable(tf.constant(1.0, shape = [num_labels]))
variables = {
'w1': w1, 'w2': w2, 'w3': w3, 'w4': w4, 'w5': w5,
'b1': b1, 'b2': b2, 'b3': b3, 'b4': b4, 'b5': b5
}
return variables
def model_lenet5(data, variables):
layer1_conv = tf.nn.conv2d(data, variables['w1'], [1, 1, 1, 1], padding='SAME')
layer1_actv = tf.sigmoid(layer1_conv + variables['b1'])
layer1_pool = tf.nn.avg_pool(layer1_actv, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
layer2_conv = tf.nn.conv2d(layer1_pool, variables['w2'], [1, 1, 1, 1], padding='VALID')
layer2_actv = tf.sigmoid(layer2_conv + variables['b2'])
layer2_pool = tf.nn.avg_pool(layer2_actv, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
flat_layer = flatten_tf_array(layer2_pool)
layer3_fccd = tf.matmul(flat_layer, variables['w3']) + variables['b3']
layer3_actv = tf.nn.sigmoid(layer3_fccd)
layer4_fccd = tf.matmul(layer3_actv, variables['w4']) + variables['b4']
layer4_actv = tf.nn.sigmoid(layer4_fccd)
logits = tf.matmul(layer4_actv, variables['w5']) + variables['b5']
return logits
由于變量和模型是單獨定義的,我們可以稍稍調(diào)整一下圖,以便讓它使用這些權(quán)重和模型,而不是以前的完全連接的NN:
#parameters determining the model size
image_size = mnist_image_size
num_labels = mnist_num_labels
#the datasets
train_dataset = mnist_train_dataset
train_labels = mnist_train_labels
test_dataset = mnist_test_dataset
test_labels = mnist_test_labels
#number of iterations and learning rate
num_steps = 10001
display_step = 1000
learning_rate = 0.001
graph = tf.Graph()
with graph.as_default():
#1) First we put the input data in a Tensorflow friendly form.
tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_width, image_height, image_depth))
tf_train_labels = tf.placeholder(tf.float32, shape = (batch_size, num_labels))
tf_test_dataset = tf.constant(test_dataset, tf.float32)
#2) Then, the weight matrices and bias vectors are initialized
variables = variables_lenet5(image_depth = image_depth, num_labels = num_labels)
#3. The model used to calculate the logits (predicted labels)
model = model_lenet5
logits = model(tf_train_dataset, variables)
#4. then we compute the softmax cross entropy between the logits and the (actual) labels
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf_train_labels))
#5. The optimizer is used to calculate the gradients of the loss function
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
test_prediction = tf.nn.softmax(model(tf_test_dataset, variables))
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print('Initialized with learning_rate', learning_rate)
for step in range(num_steps):
#Since we are using stochastic gradient descent, we are selecting small batches from the training dataset,
#and training the convolutional neural network each time with a batch.
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
batch_labels = train_labels[offset:(offset + batch_size), :]
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict)
if step % display_step == 0:
train_accuracy = accuracy(predictions, batch_labels)
test_accuracy = accuracy(test_prediction.eval(), test_labels)
message = "step {:04d} : loss is {:06.2f}, accuracy on training set {:02.2f} %, accuracy on test set {:02.2f} %".format(step, l, train_accuracy, test_accuracy)
print(message)
>>> Initialized with learning_rate 0.1
>>> step 0000 : loss is 002.49, accuracy on training set 3.12 %, accuracy on test set 10.09 %
>>> step 1000 : loss is 002.29, accuracy on training set 21.88 %, accuracy on test set 9.58 %
>>> step 2000 : loss is 000.73, accuracy on training set 75.00 %, accuracy on test set 78.20 %
>>> step 3000 : loss is 000.41, accuracy on training set 81.25 %, accuracy on test set 86.87 %
>>> step 4000 : loss is 000.26, accuracy on training set 93.75 %, accuracy on test set 90.49 %
>>> step 5000 : loss is 000.28, accuracy on training set 87.50 %, accuracy on test set 92.79 %
>>> step 6000 : loss is 000.23, accuracy on training set 96.88 %, accuracy on test set 93.64 %
>>> step 7000 : loss is 000.18, accuracy on training set 90.62 %, accuracy on test set 95.14 %
>>> step 8000 : loss is 000.14, accuracy on training set 96.88 %, accuracy on test set 95.80 %
>>> step 9000 : loss is 000.35, accuracy on training set 90.62 %, accuracy on test set 96.33 %
>>> step 10000 : loss is 000.12, accuracy on training set 93.75 %, accuracy on test set 96.76 %
我們可以看到,LeNet5架構(gòu)在MNIST數(shù)據(jù)集上的表現(xiàn)比簡單的完全連接的NN更好。
2.6 影響層輸出大小的參數(shù)
一般來說,神經(jīng)網(wǎng)絡(luò)的層數(shù)越多越好。我們可以添加更多的層、修改激活函數(shù)和池層,修改學(xué)習(xí)速率,以看看每個步驟是如何影響性能的。由于i層的輸入是i-1層的輸出,我們需要知道不同的參數(shù)是如何影響i-1層的輸出大小的。
要了解這一點,可以看看conv2d()函數(shù)。
它有四個參數(shù):
輸入圖像,維度為[batch size, image_width, image_height, image_depth]的4D張量
權(quán)重矩陣,維度為[filter_size, filter_size, image_depth, filter_depth]的4D張量
每個維度的步幅數(shù)。
填充(='SAME'http://xilinx.eetrend.com/'VALID')
這四個參數(shù)決定了輸出圖像的大小。
前兩個參數(shù)分別是包含一批輸入圖像的4D張量和包含卷積濾波器權(quán)重的4D張量。
第三個參數(shù)是卷積的步幅,即卷積濾波器在四維的每一個維度中應(yīng)該跳過多少個位置。這四個維度中的第一個維度表示圖像批次中的圖像編號,由于我們不想跳過任何圖像,因此始終為1。最后一個維度表示圖像深度(不是色彩的通道數(shù);灰度為1,RGB為3),由于我們不想跳過任何顏色通道,所以這個也總是為1。第二和第三維度表示X和Y方向上的步幅(圖像寬度和高度)。如果要應(yīng)用步幅,則這些是過濾器應(yīng)跳過的位置的維度。因此,對于步幅為1,我們必須將步幅參數(shù)設(shè)置為[1, 1, 1, 1],如果我們希望步幅為2,則將其設(shè)置為[1,2,2,1]。以此類推。
最后一個參數(shù)表示Tensorflow是否應(yīng)該對圖像用零進(jìn)行填充,以確保對于步幅為1的輸出尺寸不會改變。如果 padding = 'SAME',則圖像用零填充(并且輸出大小不會改變),如果 padding = 'VALID',則不填充。
下面我們可以看到通過圖像(大小為28 x 28)掃描的卷積濾波器(濾波器大小為5 x 5)的兩個示例。
在左側(cè),填充參數(shù)設(shè)置為“SAME”,圖像用零填充,最后4行/列包含在輸出圖像中。
在右側(cè),填充參數(shù)設(shè)置為“VALID”,圖像不用零填充,最后4行/列不包括在輸出圖像中。
?
?
我們可以看到,如果沒有用零填充,則不包括最后四個單元格,因為卷積濾波器已經(jīng)到達(dá)(非零填充)圖像的末尾。這意味著,對于28 x 28的輸入大小,輸出大小變?yōu)?4 x 24 。如果 padding = 'SAME',則輸出大小為28 x 28。
如果在掃描圖像時記下過濾器在圖像上的位置(為簡單起見,只有X方向),那么這一點就變得更加清晰了。如果步幅為1,則X位置為0-5、1-6、2-7,等等。如果步幅為2,則X位置為0-5、2-7、4-9,等等。
如果圖像大小為28 x 28,濾鏡大小為5 x 5,并且步長1到4,那么我們可以得到下面這個表:
?
可以看到,對于步幅為1,零填充輸出圖像大小為28 x 28。如果非零填充,則輸出圖像大小變?yōu)?4 x 24。對于步幅為2的過濾器,這幾個數(shù)字分別為 14 x 14 和 12 x 12,對于步幅為3的過濾器,分別為 10 x 10 和 8 x 8。以此類推。
對于任意一個步幅S,濾波器尺寸K,圖像尺寸W和填充尺寸P,輸出尺寸將為
如果在Tensorflow中 padding = “SAME”,則分子加起來恒等于1,輸出大小僅由步幅S決定。
2.7 調(diào)整 LeNet5 的架構(gòu)
在原始論文中,LeNet5架構(gòu)使用了S形激活函數(shù)和平均池。 然而,現(xiàn)在,使用relu激活函數(shù)則更為常見。 所以,我們來稍稍修改一下LeNet5 CNN,看看是否能夠提高準(zhǔn)確性。我們將稱之為類LeNet5架構(gòu):
LENET5_LIKE_BATCH_SIZE = 32
LENET5_LIKE_FILTER_SIZE = 5
LENET5_LIKE_FILTER_DEPTH = 16
LENET5_LIKE_NUM_HIDDEN = 120
def variables_lenet5_like(filter_size = LENET5_LIKE_FILTER_SIZE,
filter_depth = LENET5_LIKE_FILTER_DEPTH,
num_hidden = LENET5_LIKE_NUM_HIDDEN,
image_width = 28, image_depth = 1, num_labels = 10):
w1 = tf.Variable(tf.truncated_normal([filter_size, filter_size, image_depth, filter_depth], stddev=0.1))
b1 = tf.Variable(tf.zeros([filter_depth]))
w2 = tf.Variable(tf.truncated_normal([filter_size, filter_size, filter_depth, filter_depth], stddev=0.1))
b2 = tf.Variable(tf.constant(1.0, shape=[filter_depth]))
w3 = tf.Variable(tf.truncated_normal([(image_width // 4)(image_width // 4)filter_depth , num_hidden], stddev=0.1))
b3 = tf.Variable(tf.constant(1.0, shape = [num_hidden]))
w4 = tf.Variable(tf.truncated_normal([num_hidden, num_hidden], stddev=0.1))
b4 = tf.Variable(tf.constant(1.0, shape = [num_hidden]))
w5 = tf.Variable(tf.truncated_normal([num_hidden, num_labels], stddev=0.1))
b5 = tf.Variable(tf.constant(1.0, shape = [num_labels]))
variables = {
'w1': w1, 'w2': w2, 'w3': w3, 'w4': w4, 'w5': w5,
'b1': b1, 'b2': b2, 'b3': b3, 'b4': b4, 'b5': b5
}
return variables
def model_lenet5_like(data, variables):
layer1_conv = tf.nn.conv2d(data, variables['w1'], [1, 1, 1, 1], padding='SAME')
layer1_actv = tf.nn.relu(layer1_conv + variables['b1'])
layer1_pool = tf.nn.avg_pool(layer1_actv, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
layer2_conv = tf.nn.conv2d(layer1_pool, variables['w2'], [1, 1, 1, 1], padding='SAME')
layer2_actv = tf.nn.relu(layer2_conv + variables['b2'])
layer2_pool = tf.nn.avg_pool(layer2_actv, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
flat_layer = flatten_tf_array(layer2_pool)
layer3_fccd = tf.matmul(flat_layer, variables['w3']) + variables['b3']
layer3_actv = tf.nn.relu(layer3_fccd)
#layer3_drop = tf.nn.dropout(layer3_actv, 0.5)
layer4_fccd = tf.matmul(layer3_actv, variables['w4']) + variables['b4']
layer4_actv = tf.nn.relu(layer4_fccd)
#layer4_drop = tf.nn.dropout(layer4_actv, 0.5)
logits = tf.matmul(layer4_actv, variables['w5']) + variables['b5']
return logits
主要區(qū)別是我們使用了relu激活函數(shù)而不是S形激活函數(shù)。
除了激活函數(shù),我們還可以改變使用的優(yōu)化器,看看不同的優(yōu)化器對精度的影響。
2.8 學(xué)習(xí)速率和優(yōu)化器的影響
讓我們來看看這些CNN在MNIST和CIFAR-10數(shù)據(jù)集上的表現(xiàn)。
?
?
在上面的圖中,測試集的精度是迭代次數(shù)的函數(shù)。左側(cè)為一層完全連接的NN,中間為LeNet5 NN,右側(cè)為類LeNet5 NN。
可以看到,LeNet5 CNN在MNIST數(shù)據(jù)集上表現(xiàn)得非常好。這并不是一個大驚喜,因為它專門就是為分類手寫數(shù)字而設(shè)計的。MNIST數(shù)據(jù)集很小,并沒有太大的挑戰(zhàn)性,所以即使是一個完全連接的網(wǎng)絡(luò)也表現(xiàn)的很好。
然而,在CIFAR-10數(shù)據(jù)集上,LeNet5 NN的性能顯著下降,精度下降到了40%左右。
為了提高精度,我們可以通過應(yīng)用正則化或?qū)W習(xí)速率衰減來改變優(yōu)化器,或者微調(diào)神經(jīng)網(wǎng)絡(luò)。
?
可以看到,AdagradOptimizer、AdamOptimizer和RMSPropOptimizer的性能比GradientDescentOptimizer更好。這些都是自適應(yīng)優(yōu)化器,其性能通常比GradientDescentOptimizer更好,但需要更多的計算能力。
通過L2正則化或指數(shù)速率衰減,我們可能會得到更搞的準(zhǔn)確性,但是要獲得更好的結(jié)果,我們需要進(jìn)一步研究。
3. Tensorflow 中的深度神經(jīng)網(wǎng)絡(luò)
到目前為止,我們已經(jīng)看到了LeNet5 CNN架構(gòu)。 LeNet5包含兩個卷積層,緊接著的是完全連接的層,因此可以稱為淺層神經(jīng)網(wǎng)絡(luò)。那時候(1998年),GPU還沒有被用來進(jìn)行計算,而且CPU的功能也沒有那么強(qiáng)大,所以,在當(dāng)時,兩個卷積層已經(jīng)算是相當(dāng)具有創(chuàng)新意義了。
后來,很多其他類型的卷積神經(jīng)網(wǎng)絡(luò)被設(shè)計出來,你可以在查看詳細(xì)信息。
比如,由Alex Krizhevsky開發(fā)的非常有名的AlexNet?架構(gòu)(2012年),7層的ZF Net?(2013),以及16層的?VGGNet?(2014)。
在2015年,Google發(fā)布了一個包含初始模塊的22層的CNN(GoogLeNet),而微軟亞洲研究院構(gòu)建了一個152層的CNN,被稱為ResNet。
現(xiàn)在,根據(jù)我們目前已經(jīng)學(xué)到的知識,我們來看一下如何在Tensorflow中創(chuàng)建AlexNet和VGGNet16架構(gòu)。
3.1 AlexNet
雖然LeNet5是第一個ConvNet,但它被認(rèn)為是一個淺層神經(jīng)網(wǎng)絡(luò)。它在由大小為28 x 28的灰度圖像組成的MNIST數(shù)據(jù)集上運行良好,但是當(dāng)我們嘗試分類更大、分辨率更好、類別更多的圖像時,性能就會下降。
第一個深度CNN于2012年推出,稱為AlexNet,其創(chuàng)始人為Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton。與最近的架構(gòu)相比,AlexNet可以算是簡單的了,但在當(dāng)時它確實非常成功。它以令人難以置信的15.4%的測試錯誤率贏得了ImageNet比賽(亞軍的誤差為26.2%),并在全球深度學(xué)習(xí)和人工智能領(lǐng)域掀起了一場革命。
?
它包括5個卷積層、3個最大池化層、3個完全連接層和2個丟棄層。整體架構(gòu)如下所示:
第0層:大小為224 x 224 x 3的輸入圖像
第1層:具有96個濾波器(filter_depth_1 = 96)的卷積層,大小為11×11(filter_size_1 = 11),步長為4。它包含ReLU激活函數(shù)。 緊接著的是最大池化層和本地響應(yīng)歸一化層。
第2層:具有大小為5 x 5(filter_size_2 = 5)的256個濾波器(filter_depth_2 = 256)且步幅為1的卷積層。它包含ReLU激活函數(shù)。 緊接著的還是最大池化層和本地響應(yīng)歸一化層。
第3層:具有384個濾波器的卷積層(filter_depth_3 = 384),尺寸為3×3(filter_size_3 = 3),步幅為1。它包含ReLU激活函數(shù)
第4層:與第3層相同。
第5層:具有大小為3×3(filter_size_4 = 3)的256個濾波器(filter_depth_4 = 256)且步幅為1的卷積層。它包含ReLU激活函數(shù)
第6-8層:這些卷積層之后是完全連接層,每個層具有4096個神經(jīng)元。在原始論文中,他們對1000個類別的數(shù)據(jù)集進(jìn)行分類,但是我們將使用具有17個不同類別(的花卉)的oxford17數(shù)據(jù)集。
請注意,由于這些數(shù)據(jù)集中的圖像太小,因此無法在MNIST或CIFAR-10數(shù)據(jù)集上使用此CNN(或其他的深度CNN)。正如我們以前看到的,一個池化層(或一個步幅為2的卷積層)將圖像大小減小了2倍。 AlexNet具有3個最大池化層和一個步長為4的卷積層。這意味著原始圖像尺寸會縮小2^5。 MNIST數(shù)據(jù)集中的圖像將簡單地縮小到尺寸小于0。
因此,我們需要加載具有較大圖像的數(shù)據(jù)集,最好是224 x 224 x 3(如原始文件所示)。 17個類別的花卉數(shù)據(jù)集,又名oxflower17數(shù)據(jù)集是最理想的,因為它包含了這個大小的圖像:
ox17_image_width = 224
ox17_image_height = 224
ox17_image_depth = 3
ox17_num_labels = 17
import tflearn.datasets.oxflower17 as oxflower17
train_dataset_, train_labels_ = oxflower17.load_data(one_hot=True)
train_dataset_ox17, train_labels_ox17 = train_dataset_[:1000,:,:,:], train_labels_[:1000,:]
test_dataset_ox17, test_labels_ox17 = train_dataset_[1000:,:,:,:], train_labels_[1000:,:]
print('Training set', train_dataset_ox17.shape, train_labels_ox17.shape)
print('Test set', test_dataset_ox17.shape, test_labels_ox17.shape)
讓我們試著在AlexNet中創(chuàng)建權(quán)重矩陣和不同的層。正如我們之前看到的,我們需要跟層數(shù)一樣多的權(quán)重矩陣和偏差矢量,并且每個權(quán)重矩陣的大小應(yīng)該與其所屬層的過濾器的大小相對應(yīng)。
ALEX_PATCH_DEPTH_1, ALEX_PATCH_DEPTH_2, ALEX_PATCH_DEPTH_3, ALEX_PATCH_DEPTH_4 = 96, 256, 384, 256
ALEX_PATCH_SIZE_1, ALEX_PATCH_SIZE_2, ALEX_PATCH_SIZE_3, ALEX_PATCH_SIZE_4 = 11, 5, 3, 3
ALEX_NUM_HIDDEN_1, ALEX_NUM_HIDDEN_2 = 4096, 4096
def variables_alexnet(patch_size1 = ALEX_PATCH_SIZE_1, patch_size2 = ALEX_PATCH_SIZE_2,
patch_size3 = ALEX_PATCH_SIZE_3, patch_size4 = ALEX_PATCH_SIZE_4,
patch_depth1 = ALEX_PATCH_DEPTH_1, patch_depth2 = ALEX_PATCH_DEPTH_2,
patch_depth3 = ALEX_PATCH_DEPTH_3, patch_depth4 = ALEX_PATCH_DEPTH_4,
num_hidden1 = ALEX_NUM_HIDDEN_1, num_hidden2 = ALEX_NUM_HIDDEN_2,
image_width = 224, image_height = 224, image_depth = 3, num_labels = 17):
w1 = tf.Variable(tf.truncated_normal([patch_size1, patch_size1, image_depth, patch_depth1], stddev=0.1))
b1 = tf.Variable(tf.zeros([patch_depth1]))
w2 = tf.Variable(tf.truncated_normal([patch_size2, patch_size2, patch_depth1, patch_depth2], stddev=0.1))
b2 = tf.Variable(tf.constant(1.0, shape=[patch_depth2]))
w3 = tf.Variable(tf.truncated_normal([patch_size3, patch_size3, patch_depth2, patch_depth3], stddev=0.1))
b3 = tf.Variable(tf.zeros([patch_depth3]))
w4 = tf.Variable(tf.truncated_normal([patch_size4, patch_size4, patch_depth3, patch_depth3], stddev=0.1))
b4 = tf.Variable(tf.constant(1.0, shape=[patch_depth3]))
w5 = tf.Variable(tf.truncated_normal([patch_size4, patch_size4, patch_depth3, patch_depth3], stddev=0.1))
b5 = tf.Variable(tf.zeros([patch_depth3]))
pool_reductions = 3
conv_reductions = 2
no_reductions = pool_reductions + conv_reductions
w6 = tf.Variable(tf.truncated_normal([(image_width // 2no_reductions)(image_height // 2no_reductions)patch_depth3, num_hidden1], stddev=0.1))
b6 = tf.Variable(tf.constant(1.0, shape = [num_hidden1]))
w7 = tf.Variable(tf.truncated_normal([num_hidden1, num_hidden2], stddev=0.1))
b7 = tf.Variable(tf.constant(1.0, shape = [num_hidden2]))
w8 = tf.Variable(tf.truncated_normal([num_hidden2, num_labels], stddev=0.1))
b8 = tf.Variable(tf.constant(1.0, shape = [num_labels]))
variables = {
'w1': w1, 'w2': w2, 'w3': w3, 'w4': w4, 'w5': w5, 'w6': w6, 'w7': w7, 'w8': w8,
'b1': b1, 'b2': b2, 'b3': b3, 'b4': b4, 'b5': b5, 'b6': b6, 'b7': b7, 'b8': b8
}
return variables
def model_alexnet(data, variables):
layer1_conv = tf.nn.conv2d(data, variables['w1'], [1, 4, 4, 1], padding='SAME')
layer1_relu = tf.nn.relu(layer1_conv + variables['b1'])
layer1_pool = tf.nn.max_pool(layer1_relu, [1, 3, 3, 1], [1, 2, 2, 1], padding='SAME')
layer1_norm = tf.nn.local_response_normalization(layer1_pool)
layer2_conv = tf.nn.conv2d(layer1_norm, variables['w2'], [1, 1, 1, 1], padding='SAME')
layer2_relu = tf.nn.relu(layer2_conv + variables['b2'])
layer2_pool = tf.nn.max_pool(layer2_relu, [1, 3, 3, 1], [1, 2, 2, 1], padding='SAME')
layer2_norm = tf.nn.local_response_normalization(layer2_pool)
layer3_conv = tf.nn.conv2d(layer2_norm, variables['w3'], [1, 1, 1, 1], padding='SAME')
layer3_relu = tf.nn.relu(layer3_conv + variables['b3'])
layer4_conv = tf.nn.conv2d(layer3_relu, variables['w4'], [1, 1, 1, 1], padding='SAME')
layer4_relu = tf.nn.relu(layer4_conv + variables['b4'])
layer5_conv = tf.nn.conv2d(layer4_relu, variables['w5'], [1, 1, 1, 1], padding='SAME')
layer5_relu = tf.nn.relu(layer5_conv + variables['b5'])
layer5_pool = tf.nn.max_pool(layer4_relu, [1, 3, 3, 1], [1, 2, 2, 1], padding='SAME')
layer5_norm = tf.nn.local_response_normalization(layer5_pool)
flat_layer = flatten_tf_array(layer5_norm)
layer6_fccd = tf.matmul(flat_layer, variables['w6']) + variables['b6']
layer6_tanh = tf.tanh(layer6_fccd)
layer6_drop = tf.nn.dropout(layer6_tanh, 0.5)
layer7_fccd = tf.matmul(layer6_drop, variables['w7']) + variables['b7']
layer7_tanh = tf.tanh(layer7_fccd)
layer7_drop = tf.nn.dropout(layer7_tanh, 0.5)
logits = tf.matmul(layer7_drop, variables['w8']) + variables['b8']
return logits
現(xiàn)在我們可以修改CNN模型來使用AlexNet模型的權(quán)重和層次來對圖像進(jìn)行分類。
3.2 VGG Net-16
VGG Net于2014年由牛津大學(xué)的Karen Simonyan和Andrew Zisserman創(chuàng)建出來。 它包含了更多的層(16-19層),但是每一層的設(shè)計更為簡單;所有卷積層都具有3×3以及步長為3的過濾器,并且所有最大池化層的步長都為2。
所以它是一個更深的CNN,但更簡單。
它存在不同的配置,16層或19層。 這兩種不同配置之間的區(qū)別是在第2,第3和第4最大池化層之后對3或4個卷積層的使用(見下文)。
配置為16層(配置D)的結(jié)果似乎更好,所以我們試著在Tensorflow中創(chuàng)建它。
#The VGGNET Neural Network
VGG16_PATCH_SIZE_1, VGG16_PATCH_SIZE_2, VGG16_PATCH_SIZE_3, VGG16_PATCH_SIZE_4 = 3, 3, 3, 3
VGG16_PATCH_DEPTH_1, VGG16_PATCH_DEPTH_2, VGG16_PATCH_DEPTH_3, VGG16_PATCH_DEPTH_4 = 64, 128, 256, 512
VGG16_NUM_HIDDEN_1, VGG16_NUM_HIDDEN_2 = 4096, 1000
def variables_vggnet16(patch_size1 = VGG16_PATCH_SIZE_1, patch_size2 = VGG16_PATCH_SIZE_2,
patch_size3 = VGG16_PATCH_SIZE_3, patch_size4 = VGG16_PATCH_SIZE_4,
patch_depth1 = VGG16_PATCH_DEPTH_1, patch_depth2 = VGG16_PATCH_DEPTH_2,
patch_depth3 = VGG16_PATCH_DEPTH_3, patch_depth4 = VGG16_PATCH_DEPTH_4,
num_hidden1 = VGG16_NUM_HIDDEN_1, num_hidden2 = VGG16_NUM_HIDDEN_2,
image_width = 224, image_height = 224, image_depth = 3, num_labels = 17):
w1 = tf.Variable(tf.truncated_normal([patch_size1, patch_size1, image_depth, patch_depth1], stddev=0.1))
b1 = tf.Variable(tf.zeros([patch_depth1]))
w2 = tf.Variable(tf.truncated_normal([patch_size1, patch_size1, patch_depth1, patch_depth1], stddev=0.1))
b2 = tf.Variable(tf.constant(1.0, shape=[patch_depth1]))
w3 = tf.Variable(tf.truncated_normal([patch_size2, patch_size2, patch_depth1, patch_depth2], stddev=0.1))
b3 = tf.Variable(tf.constant(1.0, shape = [patch_depth2]))
w4 = tf.Variable(tf.truncated_normal([patch_size2, patch_size2, patch_depth2, patch_depth2], stddev=0.1))
b4 = tf.Variable(tf.constant(1.0, shape = [patch_depth2]))
w5 = tf.Variable(tf.truncated_normal([patch_size3, patch_size3, patch_depth2, patch_depth3], stddev=0.1))
b5 = tf.Variable(tf.constant(1.0, shape = [patch_depth3]))
w6 = tf.Variable(tf.truncated_normal([patch_size3, patch_size3, patch_depth3, patch_depth3], stddev=0.1))
b6 = tf.Variable(tf.constant(1.0, shape = [patch_depth3]))
w7 = tf.Variable(tf.truncated_normal([patch_size3, patch_size3, patch_depth3, patch_depth3], stddev=0.1))
b7 = tf.Variable(tf.constant(1.0, shape=[patch_depth3]))
w8 = tf.Variable(tf.truncated_normal([patch_size4, patch_size4, patch_depth3, patch_depth4], stddev=0.1))
b8 = tf.Variable(tf.constant(1.0, shape = [patch_depth4]))
w9 = tf.Variable(tf.truncated_normal([patch_size4, patch_size4, patch_depth4, patch_depth4], stddev=0.1))
b9 = tf.Variable(tf.constant(1.0, shape = [patch_depth4]))
w10 = tf.Variable(tf.truncated_normal([patch_size4, patch_size4, patch_depth4, patch_depth4], stddev=0.1))
b10 = tf.Variable(tf.constant(1.0, shape = [patch_depth4]))
w11 = tf.Variable(tf.truncated_normal([patch_size4, patch_size4, patch_depth4, patch_depth4], stddev=0.1))
b11 = tf.Variable(tf.constant(1.0, shape = [patch_depth4]))
w12 = tf.Variable(tf.truncated_normal([patch_size4, patch_size4, patch_depth4, patch_depth4], stddev=0.1))
b12 = tf.Variable(tf.constant(1.0, shape=[patch_depth4]))
w13 = tf.Variable(tf.truncated_normal([patch_size4, patch_size4, patch_depth4, patch_depth4], stddev=0.1))
b13 = tf.Variable(tf.constant(1.0, shape = [patch_depth4]))
no_pooling_layers = 5
w14 = tf.Variable(tf.truncated_normal([(image_width // (2no_pooling_layers))(image_height // (2no_pooling_layers))patch_depth4 , num_hidden1], stddev=0.1))
b14 = tf.Variable(tf.constant(1.0, shape = [num_hidden1]))
w15 = tf.Variable(tf.truncated_normal([num_hidden1, num_hidden2], stddev=0.1))
b15 = tf.Variable(tf.constant(1.0, shape = [num_hidden2]))
w16 = tf.Variable(tf.truncated_normal([num_hidden2, num_labels], stddev=0.1))
b16 = tf.Variable(tf.constant(1.0, shape = [num_labels]))
variables = {
'w1': w1, 'w2': w2, 'w3': w3, 'w4': w4, 'w5': w5, 'w6': w6, 'w7': w7, 'w8': w8, 'w9': w9, 'w10': w10,
'w11': w11, 'w12': w12, 'w13': w13, 'w14': w14, 'w15': w15, 'w16': w16,
'b1': b1, 'b2': b2, 'b3': b3, 'b4': b4, 'b5': b5, 'b6': b6, 'b7': b7, 'b8': b8, 'b9': b9, 'b10': b10,
'b11': b11, 'b12': b12, 'b13': b13, 'b14': b14, 'b15': b15, 'b16': b16
}
return variables
def model_vggnet16(data, variables):
layer1_conv = tf.nn.conv2d(data, variables['w1'], [1, 1, 1, 1], padding='SAME')
layer1_actv = tf.nn.relu(layer1_conv + variables['b1'])
layer2_conv = tf.nn.conv2d(layer1_actv, variables['w2'], [1, 1, 1, 1], padding='SAME')
layer2_actv = tf.nn.relu(layer2_conv + variables['b2'])
layer2_pool = tf.nn.max_pool(layer2_actv, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
layer3_conv = tf.nn.conv2d(layer2_pool, variables['w3'], [1, 1, 1, 1], padding='SAME')
layer3_actv = tf.nn.relu(layer3_conv + variables['b3'])
layer4_conv = tf.nn.conv2d(layer3_actv, variables['w4'], [1, 1, 1, 1], padding='SAME')
layer4_actv = tf.nn.relu(layer4_conv + variables['b4'])
layer4_pool = tf.nn.max_pool(layer4_pool, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
layer5_conv = tf.nn.conv2d(layer4_pool, variables['w5'], [1, 1, 1, 1], padding='SAME')
layer5_actv = tf.nn.relu(layer5_conv + variables['b5'])
layer6_conv = tf.nn.conv2d(layer5_actv, variables['w6'], [1, 1, 1, 1], padding='SAME')
layer6_actv = tf.nn.relu(layer6_conv + variables['b6'])
layer7_conv = tf.nn.conv2d(layer6_actv, variables['w7'], [1, 1, 1, 1], padding='SAME')
layer7_actv = tf.nn.relu(layer7_conv + variables['b7'])
layer7_pool = tf.nn.max_pool(layer7_actv, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
layer8_conv = tf.nn.conv2d(layer7_pool, variables['w8'], [1, 1, 1, 1], padding='SAME')
layer8_actv = tf.nn.relu(layer8_conv + variables['b8'])
layer9_conv = tf.nn.conv2d(layer8_actv, variables['w9'], [1, 1, 1, 1], padding='SAME')
layer9_actv = tf.nn.relu(layer9_conv + variables['b9'])
layer10_conv = tf.nn.conv2d(layer9_actv, variables['w10'], [1, 1, 1, 1], padding='SAME')
layer10_actv = tf.nn.relu(layer10_conv + variables['b10'])
layer10_pool = tf.nn.max_pool(layer10_actv, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
layer11_conv = tf.nn.conv2d(layer10_pool, variables['w11'], [1, 1, 1, 1], padding='SAME')
layer11_actv = tf.nn.relu(layer11_conv + variables['b11'])
layer12_conv = tf.nn.conv2d(layer11_actv, variables['w12'], [1, 1, 1, 1], padding='SAME')
layer12_actv = tf.nn.relu(layer12_conv + variables['b12'])
layer13_conv = tf.nn.conv2d(layer12_actv, variables['w13'], [1, 1, 1, 1], padding='SAME')
layer13_actv = tf.nn.relu(layer13_conv + variables['b13'])
layer13_pool = tf.nn.max_pool(layer13_actv, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
flat_layer = flatten_tf_array(layer13_pool)
layer14_fccd = tf.matmul(flat_layer, variables['w14']) + variables['b14']
layer14_actv = tf.nn.relu(layer14_fccd)
layer14_drop = tf.nn.dropout(layer14_actv, 0.5)
layer15_fccd = tf.matmul(layer14_drop, variables['w15']) + variables['b15']
layer15_actv = tf.nn.relu(layer15_fccd)
layer15_drop = tf.nn.dropout(layer15_actv, 0.5)
logits = tf.matmul(layer15_drop, variables['w16']) + variables['b16']
return logits
3.3 AlexNet 性能
作為比較,看一下對包含了較大圖片的oxflower17數(shù)據(jù)集的LeNet5 CNN性能:
?
4. 結(jié)語
相關(guān)代碼可以在我的GitHub庫中獲得,因此可以隨意在自己的數(shù)據(jù)集上使用它。
在深度學(xué)習(xí)的世界中還有更多的知識可以去探索:循環(huán)神經(jīng)網(wǎng)絡(luò)、基于區(qū)域的CNN、GAN、加強(qiáng)學(xué)習(xí)等等。在未來的博客文章中,我將構(gòu)建這些類型的神經(jīng)網(wǎng)絡(luò),并基于我們已經(jīng)學(xué)到的知識構(gòu)建更有意思的應(yīng)用程序。
文章為簡譯,更為詳細(xì)的內(nèi)容,請查看原文
文章轉(zhuǎn)載自: https://yq.aliyun.com/articles/178374?spm=5176.100239.blogcont221660.30....
評論
查看更多