市場研究機(jī)構(gòu)統(tǒng)計(jì)顯示,2015年中國工業(yè)機(jī)器人市場價值達(dá)13億美元,并將保持20%的年復(fù)合成長(CAGR),到2020年達(dá)到33億美元。
2015年,中國的工業(yè)機(jī)器人銷售收入占全球13%,到2020年將達(dá)到25%。美的花重金收購庫克,大概也是看中工業(yè)機(jī)器人良好的發(fā)展勢頭。
工業(yè)機(jī)器人屬于智能機(jī)器人的一種,智能機(jī)器人發(fā)展迅速,下面跟隨小編一起,了解一下智能機(jī)器人中用到的三大關(guān)鍵技術(shù)吧。
多傳感器信息融合技術(shù)是近年來十分熱門的研究課題,它與控制理論、信號處理、人工智能、概率和統(tǒng)計(jì)相結(jié)合,為機(jī)器人在各種復(fù)雜、動態(tài)、不確定和未知的環(huán)境中執(zhí)行任務(wù)提供了一種技術(shù)解決途徑。
數(shù)據(jù)融合的關(guān)鍵問題是模型設(shè)計(jì)和融合算法,數(shù)據(jù)融合模型主要包括功能模型、結(jié)構(gòu)模型和數(shù)學(xué)模型。功能模型從融合過程出發(fā),描述數(shù)據(jù)融合包括哪些主要功能和數(shù)據(jù)庫,以及進(jìn)行數(shù)據(jù)融合時系統(tǒng)各組成部分之間的相互作用過程;結(jié)構(gòu)模型從數(shù)據(jù)融合的組成出發(fā),說明數(shù)據(jù)融合系統(tǒng)的軟、硬件組成,相關(guān)數(shù)據(jù)流、系統(tǒng)與外部環(huán)境的人機(jī)界面;數(shù)學(xué)模型是數(shù)據(jù)融合的算法和綜合邏輯,算法主要包括分布檢測、空間融合、屬性融合、態(tài)勢評估和威脅估計(jì)算法等,下面從3個方面分別進(jìn)行介紹。
1.信息融合的功能模型
目前已有很多學(xué)者從不同角度提出了信息融合系統(tǒng)的一般功能模型,最有權(quán)威性的是DFS(美國三軍政府組織-實(shí)驗(yàn)室理事聯(lián)席會(JDL)下面的C3I技術(shù)委員會(TPC3)數(shù)據(jù)融合專家組)提出的功能模型。
該模型把數(shù)據(jù)融合分為3級。第1級是單源或多源處理,主要是數(shù)字處理、跟蹤相關(guān)和關(guān)聯(lián);第2級是評估目標(biāo)估計(jì)的集合,及它們彼此和背景的關(guān)系來評估整個情況;第3級用一個系統(tǒng)的先驗(yàn)?zāi)繕?biāo)集合來檢驗(yàn)評估的情況。
2.信息融合的結(jié)構(gòu)模型
數(shù)據(jù)融合的結(jié)構(gòu)模有多種不同的分類方法,其中一種分類標(biāo)準(zhǔn)是根據(jù)傳感器數(shù)據(jù)在送人融合處理中心之前已經(jīng)處理的程度來進(jìn)行分類。在這種分類標(biāo)準(zhǔn)下,融合結(jié)構(gòu)被分為傳感器級數(shù)據(jù)融合,中央級數(shù)據(jù)融合及混合式融合,還可以根據(jù)數(shù)據(jù)處理過程的分辨率來對融合結(jié)構(gòu)進(jìn)行分類。在這種情況下,融合結(jié)構(gòu)為像素級、特征級和決策級融合。
3.多傳感器信息融合實(shí)現(xiàn)的數(shù)學(xué)模型
信息融合的方法涉及到多方面的理論和技術(shù),如信號處理、估計(jì)理論、不確定性理論、模式識別、最優(yōu)化技術(shù)、模糊數(shù)學(xué)和神經(jīng)網(wǎng)絡(luò)等這方面國外已經(jīng)做了大量的研究。
目前,這些方法大致分為兩類:隨機(jī)類方法和人工智能方法。
二、導(dǎo)航與定位
在機(jī)器人系統(tǒng)中,自主導(dǎo)航是一項(xiàng)核心技術(shù),是機(jī)器人研究領(lǐng)域的重點(diǎn)和難點(diǎn)問題。自主移動機(jī)器人常用的導(dǎo)航定位方法有以下四種。
1、視覺導(dǎo)航定位
在視覺導(dǎo)航定位系統(tǒng)中,目前國內(nèi)外應(yīng)用較多的是基于局部視覺的在機(jī)器人中安裝車載攝像機(jī)的導(dǎo)航方式。在這種導(dǎo)航方式中,控制設(shè)備和傳感裝置裝載在機(jī)器人車體上,圖像識別、路徑規(guī)劃等高層決策都由車載控制計(jì)算機(jī)完成。視覺導(dǎo)航定位系統(tǒng)主要包括:攝像機(jī)(或CCD圖像傳感器)、視頻信號數(shù)字化設(shè)備、基于 DSP的快速信號處理器、計(jì)算機(jī)及其外設(shè)等。現(xiàn)在有很多機(jī)器人系統(tǒng)采用CCD圖像傳感器,其基本元件是一行硅成像元素,在一個襯底上配置光敏元件和電荷轉(zhuǎn)移器件,通過電荷的依次轉(zhuǎn)移,將多個象素的視頻信號分時、順序地取出來,如面陣CCD傳感器采集的圖像的分辨率可以從32×32到1024×1024像素等。視覺導(dǎo)航定位系統(tǒng)的工作原理簡單說來就是對機(jī)器人周邊的環(huán)境進(jìn)行光學(xué)處理,先用攝像頭進(jìn)行圖像信息采集,將采集的信息進(jìn)行壓縮,然后將它反饋到一個由神經(jīng)網(wǎng)絡(luò)和統(tǒng)計(jì)學(xué)方法構(gòu)成的學(xué)習(xí)子系統(tǒng),再由學(xué)習(xí)子系統(tǒng)將采集到的圖像信息和機(jī)器人的實(shí)際位置聯(lián)系起來,完成機(jī)器人的自主導(dǎo)航定位功能。
2、光反射導(dǎo)航定位
典型的光反射導(dǎo)航定位方法主要是利用激光或紅外傳感器來測距。激光和紅外都是利用光反射技術(shù)來進(jìn)行導(dǎo)航定位的。
激光全局定位系統(tǒng)一般由激光器旋轉(zhuǎn)機(jī)構(gòu)、反射鏡、光電接收裝置和數(shù)據(jù)采集與傳輸裝置等部分組成。工作時,激光經(jīng)過旋轉(zhuǎn)鏡面機(jī)構(gòu)向外發(fā)射,當(dāng)掃描到由后向反射器構(gòu)成的合作路標(biāo)時,反射光經(jīng)光電接收器件處理作為檢測信號,啟動數(shù)據(jù)采集程序讀取旋轉(zhuǎn)機(jī)構(gòu)的碼盤數(shù)據(jù)(目標(biāo)的測量角度值),然后通過通訊傳遞到上位機(jī)進(jìn)行數(shù)據(jù)處理,根據(jù)已知路標(biāo)的位置和檢測到的信息,就可以計(jì)算出傳感器當(dāng)前在路標(biāo)坐標(biāo)系下的位置和方向,從而達(dá)到進(jìn)一步導(dǎo)航定位的目的。
如圖是一個LDSR激光傳感器系統(tǒng)原理框圖。激光測距具有光束窄、平行性好、散射小、測距方向分辨率高等優(yōu)點(diǎn),但同時它也受環(huán)境因素干擾比較大,因此采用激光測距時怎樣對采集的信號進(jìn)行去噪等也是一個比較大的難題,另外激光測距也存在盲區(qū),所以光靠激光進(jìn)行導(dǎo)航定位實(shí)現(xiàn)起來比較困難,在工業(yè)應(yīng)用中,一般還是在特定范圍內(nèi)的工業(yè)現(xiàn)場檢測,如檢測管道裂縫等場合應(yīng)用較多。
紅外傳感技術(shù)經(jīng)常被用在多關(guān)節(jié)機(jī)器人避障系統(tǒng)中,用來構(gòu)成大面積機(jī)器人“敏感皮膚”,覆蓋在機(jī)器人手臂表面,可以檢測機(jī)器人手臂運(yùn)行過程中遇到的各種物體。典型的紅外傳感器工作原理如圖所示。該傳感器包括一個可以發(fā)射紅外光的固態(tài)發(fā)光二極管和一個用作接收器的固態(tài)光敏二極管。由紅外發(fā)光管發(fā)射經(jīng)過調(diào)制的信號,紅外光敏管接收目標(biāo)物反射的紅外調(diào)制信號,環(huán)境紅外光干擾的消除由信號調(diào)制和專用紅外濾光片保證。設(shè)輸出信號Vo代表反射光強(qiáng)度的電壓輸出,則Vo是探頭至工件間距離的函數(shù):
Vo=f(x,p)
式中,p—工件反射系數(shù)。p與目標(biāo)物表面顏色、粗糙度有關(guān)。x—探頭至工件間距離。
當(dāng)工件為p值一致的同類目標(biāo)物時,x和Vo一一對應(yīng)。x可通過對各種目標(biāo)物的接近測量實(shí)驗(yàn)數(shù)據(jù)進(jìn)行插值得到。這樣通過紅外傳感器就可以測出機(jī)器人距離目標(biāo)物體的位置,進(jìn)而通過其他的信息處理方法也就可以對移動機(jī)器人進(jìn)行導(dǎo)航定位。
雖然紅外傳感定位同樣具有靈敏度高、結(jié)構(gòu)簡單、成本低等優(yōu)點(diǎn),但因?yàn)樗鼈兘嵌确直媛矢?,而距離分辨率低,因此在移動機(jī)器人中,常用作接近覺傳感器,探測臨近或突發(fā)運(yùn)動障礙,便于機(jī)器人緊急停障。
3、GPS全球定位系統(tǒng)
如今,在智能機(jī)器人的導(dǎo)航定位技術(shù)應(yīng)用中,一般采用偽距差分動態(tài)定位法,用基準(zhǔn)接收機(jī)和動態(tài)接收機(jī)共同觀測4顆GPS衛(wèi)星,按照一定的算法即可求出某時某刻機(jī)器人的三維位置坐標(biāo)。差分動態(tài)定位消除了星鐘誤差,對于在距離基準(zhǔn)站1000km的用戶,可以消除星鐘誤差和對流層引起的誤差,因而可以顯著提高動態(tài)定位精度。但是因?yàn)樵谝苿訉?dǎo)航中,移動GPS接收機(jī)定位精度受到衛(wèi)星信號狀況和道路環(huán)境的影響,同時還受到時鐘誤差、傳播誤差、接收機(jī)噪聲等諸多因素的影響,因此,單純利用 GPS導(dǎo)航存在定位精度比較低、可靠性不高的問題,所以在機(jī)器人的導(dǎo)航應(yīng)用中通常還輔以磁羅盤、光碼盤和GPS的數(shù)據(jù)進(jìn)行導(dǎo)航。另外,GPS導(dǎo)航系統(tǒng)也不適應(yīng)用在室內(nèi)或者水下機(jī)器人的導(dǎo)航中以及對于位置精度要求較高的機(jī)器人系統(tǒng)。
4、超聲波導(dǎo)航定位
超聲波導(dǎo)航定位的工作原理也與激光和紅外類似,通常是由超聲波傳感器的發(fā)射探頭發(fā)射出超聲波,超聲波在介質(zhì)中遇到障礙物而返回到接收裝置。通過接收自身發(fā)射的超聲波反射信號,根據(jù)超聲波發(fā)出及回波接收時間差及傳播速度,計(jì)算出傳播距離S,就能得到障礙物到機(jī)器人的距離,即有公式:S=Tv/2式中,T— 超聲波發(fā)射和接收的時間差;v—超聲波在介質(zhì)中傳播的波速。
當(dāng)然,也有不少移動機(jī)器人導(dǎo)航定位中用到的是分開的發(fā)射和接收裝置,在環(huán)境地圖中布置多個接收裝置,而在移動機(jī)器人上安裝發(fā)射探頭。
在移動機(jī)器人的導(dǎo)航定位中,因?yàn)槌暡▊鞲衅髯陨淼娜毕?,如:鏡面反射、有限的波束角等,給充分獲得周邊環(huán)境信息造成了困難,因此,通常采用多傳感器組成的超聲波傳感系統(tǒng),建立相應(yīng)的環(huán)境模型,通過串行通信把傳感器采集到的信息傳遞給移動機(jī)器人的控制系統(tǒng),控制系統(tǒng)再根據(jù)采集的信號和建立的數(shù)學(xué)模型采取一定的算法進(jìn)行對應(yīng)數(shù)據(jù)處理便可以得到機(jī)器人的位置環(huán)境信息。
由于超聲波傳感器具有成本低廉、采集信息速率快、距離分辨率高等優(yōu)點(diǎn),長期以來被廣泛地應(yīng)用到移動機(jī)器人的導(dǎo)航定位中。而且它采集環(huán)境信息時不需要復(fù)雜的圖像配備技術(shù),因此測距速度快、實(shí)時性好。同時,超聲波傳感器也不易受到如天氣條件、環(huán)境光照及障礙物陰影、表面粗糙度等外界環(huán)境條件的影響。超聲波進(jìn)行導(dǎo)航定位已經(jīng)被廣泛應(yīng)用到各種移動機(jī)器人的感知系統(tǒng)中。
三、路徑規(guī)劃
路徑規(guī)劃技術(shù)是機(jī)器人研究領(lǐng)域的一個重要分支。最優(yōu)路徑規(guī)劃就是依據(jù)某個或某些優(yōu)化準(zhǔn)則(如工作代價最小、行走路線最短、行走時間最短等),在機(jī)器人工作空間中找到一條從起始狀態(tài)到目標(biāo)狀態(tài)、可以避開障礙物的最優(yōu)路徑。
移動機(jī)器人路徑規(guī)劃技術(shù)大概分為以下4類:模版匹配路徑規(guī)劃技術(shù)、人工勢場路徑規(guī)劃技術(shù)、地圖構(gòu)建路徑規(guī)劃技術(shù)和人工智能路徑規(guī)劃技術(shù)。
1.模版匹配路徑規(guī)劃技術(shù)
模版匹配方法是將機(jī)器人當(dāng)前狀態(tài)與過去經(jīng)歷相比較,找到最接近的狀態(tài),修改這一狀態(tài)下的路徑,便可得到一條新的路徑,即首先利用路徑規(guī)劃所用到的或已產(chǎn)生的信息建立一個模版庫,庫中的任一模版包含每一次規(guī)劃的環(huán)境信息和路徑信息,這些模版可通過特定的索引取得;隨后將當(dāng)前規(guī)劃任務(wù)和環(huán)境信息與模版庫中的模版進(jìn)行匹配,以尋找出一個最優(yōu)匹配模版;然后對該模版進(jìn)行修正,并以此作為最后的結(jié)果,模版匹配技術(shù)在環(huán)境確定情況下,有較好的應(yīng)用效果,如 Vasudevan等提出的基于案例的自治水下機(jī)器人(AUV) 路徑規(guī)劃方法,Liu等提出的清潔機(jī)器人的模版匹配路徑規(guī)劃方法,為了提高模版匹配路徑規(guī)劃技術(shù)對環(huán)境變化的適應(yīng)性,部分學(xué)者提出了將模版匹配與神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)相結(jié)合的方法,如Ram等將基于事例的在線匹配和增強(qiáng)式學(xué)習(xí)相結(jié)合,提高了模版匹配規(guī)劃方法中機(jī)器人的自適應(yīng)性能,使機(jī)器人能部分地適應(yīng)環(huán)境的變化,以及Arleo等將環(huán)境模版與神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)相結(jié)合的路徑規(guī)劃方法等。
2.人工勢場路徑規(guī)劃技術(shù)
人工勢場路徑規(guī)劃技術(shù)的基本思想是將機(jī)器人在環(huán)境中的運(yùn)動視為一種機(jī)器人在虛擬的人工受力場中的運(yùn)動。障礙物對機(jī)器人產(chǎn)生斥力,目標(biāo)點(diǎn)對機(jī)器人產(chǎn)生引力,引力和斥力的合力作為機(jī)器人的控制力,從而控制機(jī)器人避開障礙物而到達(dá)目標(biāo)位置。
早期人工勢場路徑規(guī)劃研究是一種靜態(tài)環(huán)境的人工勢場,即將障礙物和目標(biāo)物均看成是靜態(tài)不變的,機(jī)器人僅根據(jù)靜態(tài)環(huán)境中障礙物和目標(biāo)物的具體位置規(guī)劃運(yùn)動路徑,不考慮它們的移動速度。然而,現(xiàn)實(shí)世界中的環(huán)境往往是動態(tài)的,障礙物和目標(biāo)物都可能是移動的,為了解決動態(tài)環(huán)境中機(jī)器人的路徑規(guī)劃問題,F(xiàn)ujimura等提出一種相對動態(tài)的人工勢場方法,將時間看成規(guī)劃模型的一維參量,而移動的障礙物在擴(kuò)展的模型中仍被看成是靜態(tài)的,這樣動態(tài)路徑規(guī)劃仍可運(yùn)用靜態(tài)路徑規(guī)劃方法加以實(shí)現(xiàn)。該方法存在的主要問題是假設(shè)機(jī)器人的軌跡總是已知的,但這一點(diǎn)在現(xiàn)實(shí)世界中難以實(shí)現(xiàn),對此,Ko等將障礙物的速度參量引入到斥力勢函數(shù)的構(gòu)造中,提出動態(tài)環(huán)境中的路徑規(guī)劃策略,并給出了仿真結(jié)果,但是,該方法的兩個假設(shè)使其與實(shí)際的動態(tài)環(huán)境存在距離:(1)僅考慮環(huán)境中障礙物的運(yùn)動速度,未考慮機(jī)器人的運(yùn)動速度;(2)認(rèn)為障礙物與機(jī)器人之間的相對速度是固定不變的,這不是完整的動態(tài)環(huán)境。對于動態(tài)路徑規(guī)劃問題來說,與機(jī)器人避障相關(guān)的主要是機(jī)器人與障礙物之間的相對位置和相對速度,而非絕對位置和速度,對此,Ge等將機(jī)器人與目標(biāo)物的相對位置與相對速度引入吸引勢函數(shù),將機(jī)器人與障礙物的相對位置與相對速度引入排斥勢函數(shù),提出動態(tài)環(huán)境下的機(jī)器人路徑規(guī)劃算法,并將該算法應(yīng)用于全方位足球移動機(jī)器人的路徑規(guī)劃中,取得了比較滿意的仿真與實(shí)驗(yàn)結(jié)果。
3.地圖構(gòu)建路徑規(guī)劃技術(shù)
地圖構(gòu)建路徑規(guī)劃技術(shù),是按照機(jī)器人自身傳感器搜索的障礙物信息,將機(jī)器人周圍區(qū)域劃分為不同的網(wǎng)格空間(如自由空間和限制空間等),計(jì)算網(wǎng)格空間的障礙物占有情況,再依據(jù)一定規(guī)則確定最優(yōu)路徑,地圖構(gòu)建又分為路標(biāo)法和柵格法,也稱單元分解法。前者是構(gòu)造一幅由標(biāo)志點(diǎn)和連接邊線組成的機(jī)器人可行路徑圖,如可視線方法、切線圖方法、Voronoi圖方法和概率圖展開法等。
可視圖法將機(jī)器人看成一個點(diǎn),機(jī)器人、目標(biāo)點(diǎn)和多邊形障礙物的各頂點(diǎn)進(jìn)行組合連接,并保證這些直線均不與障礙物相交,便形成一張圖,稱為可視圖,由于任意兩直線的頂點(diǎn)都是可見的,從起點(diǎn)沿著這些直線到達(dá)目標(biāo)點(diǎn)的所有路徑均是運(yùn)動物體的無碰路徑,路徑規(guī)劃就是搜索從起點(diǎn)到目標(biāo)點(diǎn)經(jīng)過這些可視直線的最短距離問題;切線圖法和Voronoi圖法對可視圖法進(jìn)行了改造,切線圖法以多邊形障礙物模型為基礎(chǔ),任意形狀障礙物用近似多邊形替代,在自由空間中構(gòu)造切線圖,因此從起始點(diǎn)到目標(biāo)點(diǎn)機(jī)器人是沿著切線行走,即機(jī)器人必須幾乎接近障礙物行走,路徑較短,但如果控制過程中產(chǎn)生位置誤差,移動機(jī)器人碰撞的可能性會很高,Voronoi圖由一系列的直線段和拋物線段構(gòu)成,直線由兩個障礙物的頂點(diǎn)或兩個障礙物的邊定義生成,直線段上所有點(diǎn)必須距離障礙物的頂點(diǎn)或障礙物的邊相等,拋物線段由一個障礙物的頂點(diǎn)和一個障礙物的邊定義生成,拋物線段同樣要求與障礙物頂點(diǎn)和障礙物的邊有相同距離,與切線法相比,Voronoi圖法從起始節(jié)點(diǎn)到目標(biāo)節(jié)點(diǎn)的路徑將會增長,但采用這種控制方式時,即使產(chǎn)生位置誤差,移動機(jī)器人也不會碰到障礙物,安全性較高,下圖為切線圖法與Voronoi圖法示意圖。
切線圖法與Voronoi圖法
柵格法是將機(jī)器人周圍空間分解為相互連接且不重疊的空間單元;柵格(cell),由這些柵格構(gòu)成一個連通圖,依據(jù)障礙物占有情況,在此圖上搜索一條從起始柵格到目標(biāo)柵格無碰撞的最優(yōu)路徑.這其中根據(jù)柵格處理方法的不同,又分為精確柵格法和近似柵格法,后者也稱概率柵格法。精確柵格法是將自由空間分解成多個不重疊的單元,這些單元的組合與原自由空間精確相等,如下圖就是常用的一種精確柵格分解法一一梯形柵格分解。
與精確柵格法不同,近似柵格法的所有柵格都是預(yù)定的形狀,通常為矩形,整個環(huán)境被分割成多個較大的矩形,每個矩形之間都是連續(xù)的,典型的方法是“四叉樹”法,如果大矩形內(nèi)部包含障礙物或者邊界,則將其分割成4個小矩形,對所有稍大的柵格都進(jìn)行這種劃分,然后在劃分的最后界限內(nèi)形成的小柵格間重復(fù)執(zhí)行該程序,直到達(dá)到解的界限為止。
地圖構(gòu)建法直觀明了,它常與其他路徑規(guī)劃方法集成使用,如Araujo提出的ART神經(jīng)網(wǎng)絡(luò)的地圖構(gòu)建路徑規(guī)劃算法,Najjaran提出的卡爾曼濾波器的地圖構(gòu)建路徑規(guī)劃,Yang等提出的基于生物啟發(fā)神經(jīng)網(wǎng)絡(luò)與地圖構(gòu)建集成的清潔機(jī)器人完全覆蓋路徑規(guī)劃技術(shù)(CCPP)等。
目前,地圖構(gòu)建技術(shù)已引起機(jī)器人研究領(lǐng)域的廣泛關(guān)注,成為移動機(jī)器人路徑規(guī)劃的研究熱點(diǎn)之一,但機(jī)器人傳感器信息資源有限,使得網(wǎng)格地圖障礙物信息很難計(jì)算與處理,同時由于機(jī)器人要動態(tài)快速地更新地圖數(shù)據(jù),在網(wǎng)格數(shù)較多、分辨率較高時難以保證路徑規(guī)劃的實(shí)時性,因此,地圖構(gòu)建方法必須在地圖網(wǎng)格分辨率與路徑規(guī)劃實(shí)時性上尋求平衡。
4.人工智能路徑規(guī)劃技術(shù)
人工智能路徑規(guī)劃技術(shù)是將現(xiàn)代人工智能技術(shù)應(yīng)用于移動機(jī)器人的路徑規(guī)劃中,如人工神經(jīng)網(wǎng)絡(luò)、進(jìn)化計(jì)算、模糊邏輯與信息融合等。遺傳算法是最早應(yīng)用于組合優(yōu)化問題的智能優(yōu)化算法,該算法及其派生算法在機(jī)器人路徑規(guī)劃研究領(lǐng)域已得到應(yīng)用,在蟻群算法較好解決旅行商問題(TSP)的基礎(chǔ)上,許多學(xué)者進(jìn)一步將蟻群優(yōu)化算法引入到水下機(jī)器人(UV)的路徑規(guī)劃研究中。
神經(jīng)網(wǎng)絡(luò)作為人工智能的重要內(nèi)容,在移動機(jī)器人路徑規(guī)劃研究中得到了廣泛關(guān)注,如Ghatee等將Hopfield神經(jīng)網(wǎng)絡(luò)應(yīng)用到路徑距離的優(yōu)化中;Zhu等將自組織SOM神經(jīng)網(wǎng)絡(luò)應(yīng)用到多任務(wù)多機(jī)器人的任務(wù)分配與路徑規(guī)劃中,近年來加拿大學(xué)者Simon提出一種新的生物啟發(fā)動態(tài)神經(jīng)網(wǎng)絡(luò)模型,將神經(jīng)網(wǎng)絡(luò)的神經(jīng)元與二維規(guī)劃空間的離散坐標(biāo)對應(yīng)起來,通過規(guī)定障礙物和非障礙物對神經(jīng)元輸入激勵和抑制的不同,直接計(jì)算相關(guān)神經(jīng)元的輸出,由此判定機(jī)器人的運(yùn)行方向,由于該神經(jīng)網(wǎng)絡(luò)不需要學(xué)習(xí)訓(xùn)練過程,路徑規(guī)劃實(shí)時性好,同時利用神經(jīng)網(wǎng)絡(luò)本身的快速衰減特性,較好地解決了機(jī)器人路徑規(guī)劃的死區(qū)問題。如圖為用于局部路徑規(guī)劃的生物啟發(fā)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)圖,圖中所示為機(jī)器人(處于神經(jīng)元處)傳感器的感受半徑,每個神經(jīng)元與環(huán)境位置坐標(biāo)對應(yīng),動態(tài)計(jì)算機(jī)器人鄰近神經(jīng)元輸出,機(jī)器人根據(jù)神經(jīng)元輸出大小決定下一步運(yùn)行目標(biāo),從而實(shí)現(xiàn)安全的路徑規(guī)劃。
人工智能技術(shù)應(yīng)用于移動機(jī)器人路徑規(guī)劃,增強(qiáng)了機(jī)器人的“智能”特性,克服了許多傳統(tǒng)規(guī)劃方法的不足,但該方法也有不足之處,有關(guān)遺傳優(yōu)化與蟻群算法路徑規(guī)劃技術(shù)主要針對路徑規(guī)劃中的部分問題,利用進(jìn)化計(jì)算進(jìn)行優(yōu)化處理,并與其他路徑規(guī)劃方法結(jié)合在一起使用,單獨(dú)完成路徑規(guī)劃任務(wù)的情況較少。信息融合技術(shù)主要應(yīng)用于機(jī)器人傳感器信號處理方面,而非直接的路徑規(guī)劃策略,對神經(jīng)網(wǎng)絡(luò)路徑規(guī)劃而言,大多數(shù)神經(jīng)網(wǎng)絡(luò)路徑規(guī)劃均存在規(guī)劃知識的學(xué)習(xí)過程,不僅存在學(xué)習(xí)樣本難以獲取,而且存在學(xué)習(xí)滯后問題,從而影響神經(jīng)網(wǎng)絡(luò)路徑規(guī)劃的實(shí)時性,生物啟發(fā)神經(jīng)網(wǎng)絡(luò)路徑規(guī)劃雖然實(shí)時性較好,但其輸入激勵與抑制的設(shè)定也存在人為不確定因素。
基于生物啟發(fā)神經(jīng)網(wǎng)絡(luò)路徑規(guī)劃
此外,智能機(jī)器人還用到機(jī)器人視覺、智能控制、人機(jī)接口技術(shù)等多種技術(shù),小編就不一一贅述了,大家可以搜尋相關(guān)資料,一起分享哦。
評論
查看更多