--- 產(chǎn)品詳情 ---
DSP | 1 C64x |
DSP MHz (Max) | 594 |
CPU | 32-/64-bit |
Operating system | Linux, Windows Embedded CE, Ultron, ThreadX, DSP/BIOS |
Ethernet MAC | 10/100 |
Rating | Military |
Operating temperature range (C) | -40 to 105 |
- High-Performance Digital Media SoC
- 594-MHz C64x+? Clock Rates
- 297-MHz ARM926EJ-S? Clock Rates
- Eight 32-Bit C64x+ Instructions/Cycle
- 4752 C64x+ MIPS
- Fully Software-Compatible With C64x/ARM9?
- Extended Temperature Devices Available
- Advanced Very-Long-Instruction-Word (VLIW)
TMS320C64x+? DSP Core- Eight Highly Independent Functional Units
- Six ALUs (32-/40-Bit), Each Supports Single 32-Bit,
Dual 16-Bit, or Quad 8-Bit Arithmetic per Clock Cycle - Two Multipliers Support Four 16 x 16-Bit Multiplies
(32-Bit Results) per Clock Cycle or Eight 8 x 8-Bit
Multiplies (16-Bit Results) per Clock Cycle
- Six ALUs (32-/40-Bit), Each Supports Single 32-Bit,
- Load-Store Architecture With Non-Aligned Support
- 64 32-Bit General-Purpose Registers
- Instruction Packing Reduces Code Size
- All Instructions Conditional
- Additional C64x+? Enhancements
- Protected Mode Operation
- Exceptions Support for Error Detection and
Program Redirection - Hardware Support for Modulo Loop Operation
- Eight Highly Independent Functional Units
- C64x+ Instruction Set Features
- Byte-Addressable (8-/16-/32-/64-Bit Data)
- 8-Bit Overflow Protection
- Bit-Field Extract, Set, Clear
- Normalization, Saturation, Bit-Counting
- Compact 16-Bit Instructions
- Additional Instructions to Support Complex Multiplies
- C64x+ L1/L2 Memory Architecture
- 32K-Byte L1P Program RAM/Cache (Direct Mapped)
- 80K-Byte L1D Data RAM/Cache (2-Way Set-Associative)
- 64K-Byte L2 Unified Mapped RAM/Cache
(Flexible RAM/Cache Allocation)
- ARM926EJ-S Core
- Support for 32-Bit and 16-Bit (Thumb? Mode)
Instruction Sets - DSP Instruction Extensions and Single Cycle MAC
- ARM? Jazelle? Technology
- EmbeddedICE-RT? Logic for Real-Time Debug
- Support for 32-Bit and 16-Bit (Thumb? Mode)
- ARM9 Memory Architecture
- 16K-Byte Instruction Cache
- 8K-Byte Data Cache
- 16K-Byte RAM
- 8K-Byte ROM
- Embedded Trace Buffer? (ETB11?) With 4KB
Memory for ARM9 Debug - Endianness: Little Endian for ARM and DSP
- Video Processing Subsystem
- Front End Provides:
- CCD and CMOS Imager Interface
- BT.601/BT.656 Digital YCbCr 4:2:2
(8-/16-Bit) Interface - Preview Engine for Real-Time Image Processing
- Glueless Interface to Common Video Decoders
- Histogram Module
- Auto-Exposure, Auto-white Balance and Auto-Focus Module
- Resize Endine
- Resize Images From 1/4x to 4x
- Separate Horizontal/Vertical Control
- Back End Provides:
- Hardware On-Screen Display (OSD)
- Four 54_MHz DACs for a Combination of
- Composite NTSC/PAL Video
- Luma/Chroma Separate Video (S-Video)
- Component (YPbPR or RGB) Video (Progressive)
- Digital Output
- 8-/16-bit YUV or up to 24-Bit RGB
- HD Resolution
- Up to 2 Video Windows
- Front End Provides:
- External Memory Interfaces (EMIFs)
- 32-Bit DDR2 SDRAM Memory Controller With
256M-Byte Address Space (1.8-V I/O) - Asynchronous 16-Bit Wide EMIF (EMIFA) With 128M-Byte
Address Reach- Flash Memory Interfaces
- NOR (8-/16-Bit-Wide Data)
- NAND (8-/16-Bit-Wide Data)
- Flash Memory Interfaces
- 32-Bit DDR2 SDRAM Memory Controller With
- Flash Card Interfaces
- Multimedia Card (MMC)/Secure Digital (SD)
with Secure Data I/O (SDIO) - Compact Flash Controller With True IDE Mode
- SmartMedia
- Multimedia Card (MMC)/Secure Digital (SD)
- Enhanced Direct-Memory-Access (EDMA)
Controller (64 Independent Channels) - Two 64-Bit General-Purpose Timers (Each
Configurable as Two 32-Bit Timers) - One 64-Bit Watch Dog Timer
- Three UARTs (One with RTS and CTS Flow Control)
- One Serial Peripheral Interface (SPI) With Two Chip-Selects
- Master/Slave Inter-Integrated Circuit (I2C Bus?)
- Audio Serial Port (ASP)
- I2S
- AC97 Audio Codec Interface
- Standard Voice Codec Interface (AIC12)
- 10/100 Mb/s Ethernet MAC (EMAC)
- IEEE 802.3 Compliant
- Media Independent Interface (MII)
- VLYNQ? Interface (FPGA Interface)
- Host Port Interface (HPI) with 16-Bit Multiplexed
Address/Data - USB Port With Integrated 2.0 PHY
- USB 2.0 High-/Full-Speed (480-Mbps) Client
- USB 2.0 High-/Full-/Low-Speed Host (Mini-Host,
Supporting One External Device)
- Three Pulse Width Modulator (PWM) Outputs
- On-Chip ARM ROM Bootloader (RBL) to Boot
From NAND Flash or UART - ATA/ATAPI I/F (ATA/ATAPI-6 Specification)
- Individual Power-Saving Modes for ARM/DSP
- Flexible PLL Clock Generators
- IEEE-1149.1 (JTAG) Boundary-Scan-Compatible
- Up to 71 General-Purpose I/O (GPIO) Pins
(Multiplexed With Other Device Functions) - 361-Pin Pb-Free BGA Package (ZWT Suffix),
0.8-mm Ball Pitch - 0.09-μm/6-Level Cu Metal Process (CMOS)
- 3.3-V and 1.8-V I/O, 1.2-V Internal
- Applications:
- Digital Media
- Networked Media Encode/Decode
- Video Imaging
- SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS
- Controlled Baseline
- One Assembly/Test Site
- One Fabrication Site
- Available in Military (–55°C/125°C) Temperature
Range(1) - Extended Product Life Cycle
- Extended Product-Change Notification
- Product Traceability
(1) Additional temperature ranges are available - contact factory
All trademarks are the property of their respective owners.
The TMS320DM6446 devices (also referenced as DM6446 and including the SM320DM6446) leverages TI?s DaVinci? technology to meet the networked media encode and decode application processing needs of next-generation embedded devices.
The DM6446 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution.
The dual-core architecture of the DM6446 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+? DSP core and an ARM926EJ-S core.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.
The ARM core incorporates:
- A coprocessor 15 (CP15) and protection module
- Data and program Memory Management Units (MMUs) with table look-aside buffers.
- Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT).
The TMS320C64x+? DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000? DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000? DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+? DSP with added functionality and an expanded instruction set.
Any reference to the C64x? DSP or C64x? CPU also applies, unless otherwise noted, to the C64x+? DSP and C64x+? CPU, respectively.
With performance of up to 4752 million instructions per second (MIPS) at a clock rate of 594 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units?two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732).
The DM6446 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6446 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.
The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2.
The DM6446 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video Processing Back-End (VPBE) output with imaging co-processor (VICP) used for display.
The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV4:2:2. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM6446. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024.
The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs.
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM644x and the network. The DM6446 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support.
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses.
The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6446 to easily control peripheral devices and/or communicate with host processors. The DM6446 also provides multimedia card support, MMC/SD, with SDIO support.
The DM6446 also includes a Video/Imaging Co-processor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative.
The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
The DM6446 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows? debugger interface for visibility into source code execution.
為你推薦
-
TI數(shù)字多路復(fù)用器和編碼器SN54HC1512022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN54LS1532022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器CD54HC1472022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器CY74FCT2257T2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74LVC257A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74LVC157A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74ALS258A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74ALS257A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74ALS157A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74AHCT1582022-12-23 15:12
-
如何利用運(yùn)算放大器設(shè)計(jì)振蕩電路?2023-08-09 08:08
使用運(yùn)算放大器設(shè)計(jì)振蕩電路運(yùn)算放大器的工作原理發(fā)明運(yùn)算放大器的人絕對(duì)是天才。中間兩端接上電源,當(dāng)同相輸入大于反相輸入,右側(cè)就會(huì)輸出(接近)電源電壓(Vcc),如果反過(guò)來(lái)小于同相輸入,則輸出0V(負(fù)電源)電壓。在輸出端接上燈泡,假設(shè)我想控制燈泡循環(huán)亮滅,那就需要一會(huì)輸出高電平點(diǎn)亮,一會(huì)輸出低電平熄滅。也就是我需要讓左邊能自動(dòng)變化大小,就能實(shí)現(xiàn)控制燈泡。如何讓電1494瀏覽量 -
【PCB設(shè)計(jì)必備】31條布線技巧2023-08-03 08:09
相信大家在做PCB設(shè)計(jì)時(shí),都會(huì)發(fā)現(xiàn)布線這個(gè)環(huán)節(jié)必不可少,而且布線的合理性,也決定了PCB的美觀度和其生產(chǎn)成本的高低,同時(shí)還能體現(xiàn)出電路性能和散熱性能的好壞,以及是否可以讓器件的性能達(dá)到最優(yōu)等。在上篇內(nèi)容中,小編主要分享了PCB線寬線距的一些設(shè)計(jì)規(guī)則,那么本篇內(nèi)容,將針對(duì)PCB的布線方式,做個(gè)全面的總結(jié)給到大家,希望能夠?qū)︷B(yǎng)成良好的設(shè)計(jì)習(xí)慣有所幫助。1走線長(zhǎng)度1290瀏覽量 -
電動(dòng)汽車直流快充方案設(shè)計(jì)【含參考設(shè)計(jì)】2023-08-03 08:08
大功率直流充電系統(tǒng)架構(gòu)大功率直流充電設(shè)計(jì)標(biāo)準(zhǔn)國(guó)家大功率充電標(biāo)準(zhǔn)“Chaoji”技術(shù)標(biāo)準(zhǔn)設(shè)計(jì)目標(biāo)是未來(lái)可實(shí)現(xiàn)電動(dòng)汽車充電5分鐘行駛400公里?!癈haoji”技術(shù)標(biāo)準(zhǔn)主要設(shè)計(jì)參數(shù)如下:最大電壓:目前1000V(可擴(kuò)展到1500V);最大電流:帶冷卻系統(tǒng)500A(可擴(kuò)展到600A);不帶冷卻系統(tǒng)150-200A;最大功率:900KW。大功率直流充電系統(tǒng)架構(gòu)大功率2579瀏覽量 -
Buck電路的原理及器件選型指南2023-07-31 22:28
Buck電路工作原理電源閉合時(shí)電壓會(huì)快速增加,當(dāng)斷開(kāi)時(shí)電壓會(huì)快速減小,如果開(kāi)關(guān)速度足夠快的話,是不是就能把負(fù)載,控制在想要的電壓值以內(nèi)呢?假設(shè)12V降壓到5V,也就意味著,MOS管開(kāi)關(guān)需要42%時(shí)間導(dǎo)通,58%時(shí)間斷開(kāi)。當(dāng)42%時(shí)間MOS管導(dǎo)通時(shí),電感被充磁儲(chǔ)能,同時(shí)對(duì)電容進(jìn)行充電,給負(fù)載提供電量。當(dāng)58%時(shí)間MOS管斷開(kāi)時(shí),由于電感上的電流不能突變,電路通 -
100W USB PD 3.0電源2023-07-31 22:27
-
千萬(wàn)不要忽略PCB設(shè)計(jì)中線寬線距的重要性2023-07-31 22:27
想要做好PCB設(shè)計(jì),除了整體的布線布局外,線寬線距的規(guī)則也非常重要,因?yàn)榫€寬線距決定著電路板的性能和穩(wěn)定性。所以本篇以RK3588為例,詳細(xì)為大家介紹一下PCB線寬線距的通用設(shè)計(jì)規(guī)則。要注意的是,布線之前須把軟件默認(rèn)設(shè)置選項(xiàng)設(shè)置好,并打開(kāi)DRC檢測(cè)開(kāi)關(guān)。布線建議打開(kāi)5mil格點(diǎn),等長(zhǎng)時(shí)可根據(jù)情況設(shè)置1mil格點(diǎn)。PCB布線線寬01布線首先應(yīng)滿足工廠加工能力,1195瀏覽量 -
基于STM32的300W無(wú)刷直流電機(jī)驅(qū)動(dòng)方案2023-07-06 10:02
如何驅(qū)動(dòng)無(wú)刷電機(jī)?近些年,由于無(wú)刷直流電機(jī)大規(guī)模的研發(fā)和技術(shù)的逐漸成熟,已逐步成為工業(yè)用電機(jī)的發(fā)展主流。圍繞降低生產(chǎn)成本和提高運(yùn)行效率,各大廠商也提供不同型號(hào)的電機(jī)以滿足不同驅(qū)動(dòng)系統(tǒng)的需求?,F(xiàn)階段已經(jīng)在紡織、冶金、印刷、自動(dòng)化生產(chǎn)流水線、數(shù)控機(jī)床等工業(yè)生產(chǎn)方面應(yīng)用。無(wú)刷直流電機(jī)的優(yōu)點(diǎn)與局限性優(yōu)點(diǎn):高輸出功率、小尺寸和重量、散熱性好、效率高、運(yùn)行速度范圍寬、低680瀏覽量 -
上新啦!開(kāi)發(fā)板僅需9.9元!2023-06-21 17:43
上新啦!開(kāi)發(fā)板僅需9.9元!1155瀏覽量 -
參考設(shè)計(jì) | 2KW AC/DC數(shù)字電源方案2023-06-21 17:43
什么是數(shù)字電源?數(shù)字電源,以數(shù)字信號(hào)處理器(DSP)或微控制器(MCU)為核心,將數(shù)字電源驅(qū)動(dòng)器、PWM控制器等作為控制對(duì)象,能實(shí)現(xiàn)控制、管理和監(jiān)測(cè)功能的電源產(chǎn)品。它是通過(guò)設(shè)定開(kāi)關(guān)電源的內(nèi)部參數(shù)來(lái)改變其外特性,并在“電源控制”的基礎(chǔ)上增加了“電源管理”。所謂電源管理是指將電源有效地分配給系統(tǒng)的不同組件,最大限度地降低損耗。數(shù)字電源的管理(如電源排序)必須全部 -
千萬(wàn)不能小瞧的PCB半孔板2023-06-21 17:34