資料介紹
一、指紋識別成智能手機標配
伴隨移動支付業(yè)務的火爆,指紋識別技術(shù)已成為今天智能手機的標配,而在CMOS圖像傳感器/TFT顯示屏、超音波偵測等新技術(shù)的不斷助推下,更讓其市場迎來了發(fā)展的新春。
據(jù)調(diào)研機構(gòu)Yole預測,未來5年,指紋識別市場的復合年增率(CAGR)將達到19%,市場規(guī)模有望從2016年的28億美元,增加到2022年的47億美元。
最初只是作為方便手機解鎖功能的元器件——指紋識別傳感器,如今在智能手機移動支付業(yè)務的帶動下,已經(jīng)變成要為移動支付把關的重要安全元素。據(jù)業(yè)內(nèi)人士分析,目前的指紋識別市場,大多來自于OEM廠對全玻璃設計與防水功能的需求。這促使CMOS/TFT、超音波偵測等新技術(shù),進一步推動高整合型指紋識別技術(shù)的演進。
據(jù)統(tǒng)計,2016年的指紋識別傳感器的出貨量已達6.89億顆,相較2013年的2300萬顆,CAGR達到210%。當然,大量的需求也促使指紋識別傳感器均價的走低,目前已從5美元下滑到3美元,甚至更低,未來供應商仍將繼續(xù)面臨價格壓力。
指紋識別市場對傳感器制造商來說具有較高彈性,雖然今后5年的市場規(guī)模非??捎^,但如何在激烈的市場競爭中脫穎而出,仍然是考驗相關廠商的一道難題。
二、指紋識別的原理
指紋識別技術(shù)包含有以下兩種主要的識別技術(shù):
第一種是采用不同指紋圖像統(tǒng)計對比的方法;
第二種是采用指紋圖像本身固有的特征信息進行比對的方法。
第一種方法主要是將兩幅指紋圖像進行統(tǒng)計對比,查看他們之間相似度的大小,根據(jù)大小來判斷這兩幅指紋是否取自于同一個人,從而實現(xiàn)身份識別的作用。第二種方法是根據(jù)兩幅指紋圖像的結(jié)構(gòu)特征,比較他們的特征信息,確認他們的身份。特征包含兩種類型:全局特征類型和局部特征類型。
指紋識別技術(shù)的全過程是:
?。?)使用指紋采集設備采集指紋圖像。
(2)對指紋圖像中的大量噪聲點進行預處理,從而提升后面處理的效率。在預處理之后,得到了一個關于指紋圖像的輪廓線,為下一步特征提取做準備。
?。?)進行指紋圖像的特征提取,提取出其特征信息點。
(4)對指紋圖像進行特征匹配,把提取的特征點與數(shù)據(jù)庫中預存的特征點進行比對,通過比對來判斷身份。根據(jù)英國學者E.R.Herry 的研究發(fā)現(xiàn),兩個指紋圖像中,如果特征點的對數(shù)有13 對是重合的,就可以認為這兩個圖像取自于同一個人。
指紋識別系統(tǒng)的主要性能參數(shù)有以下幾種:
?。?)誤識率:指兩個不同指紋被錯誤地識別成相同指紋的概率;
?。?)拒識率:指同一個手指的兩個不同指紋樣本不能匹配,即被認為來自不同手指的概率;
?。?)等錯誤率:第一和第二種錯誤相等時的數(shù)值;
?。?) 注冊時間:從指紋被采集到完成指紋特征提出所需要消耗的時間;
(5) 匹配時間:兩個指紋樣本進行一次對比匹配所需要消耗的時間;
?。?) 模板特征的大小:從一個指紋圖像中提取出的指紋特征的存儲容量;
(7)分配內(nèi)存的大?。涸谥讣y識別的各個階段,計算機系統(tǒng)需要占用的內(nèi)存數(shù)量。
三、指紋圖像的質(zhì)量評估
在通過指紋采集設備把圖像采集進入系統(tǒng)之后,我們需要對采集到的指紋圖像的質(zhì)量進行評估。如果圖像的質(zhì)量不達標,就會對后期產(chǎn)生影響。因此,需要對指紋圖像進行評估。目前,指紋圖像的質(zhì)量評估有以下幾種方法:
(1)計算圖像的信噪比:
這種方法是指求出圖像的信號與噪聲的方差之比。首先計算圖像所有像素的局部方差,將局部方差的最大值設為信號方差,最小值設為噪聲方差,求出它們的比值,再轉(zhuǎn)成dB 數(shù),最后用經(jīng)驗公式進行修正。此方法在效率方面表現(xiàn)一般。
(2)統(tǒng)計指紋圖像細節(jié)點的數(shù)量:
對指紋圖像中細節(jié)點的數(shù)量進行識別和統(tǒng)計。通過數(shù)量的多少來判斷該指紋圖像的質(zhì)量是否在合格的范圍之內(nèi)。此方法理論上可行,但是由于首先需要對指紋進行預處理、提取細節(jié)點,因此效率不高。
?。?)視覺客觀測度:
該方法建立在視覺測評過程和客觀測度基礎上,利用設定的評測參數(shù),對指紋圖像的質(zhì)量評價出一個綜合結(jié)果。這一方法從全局上對指紋圖像的質(zhì)量,能夠得出很好的判斷。但是從局部上來看,指紋的紋理分析缺少了對指紋方向信息的判斷。
(4)計算指紋圖像方向信息:
從指紋圖像局部特征開始,結(jié)合指紋的全局特征來判斷指紋圖像的質(zhì)量。通過檢測圖像的有效面積和清晰度,來確定圖像是否合格。具體方法是:首先,通過計算圖像方向信息,確定前景塊和背景塊;然后,通過比較前景塊和背景塊的比例來判斷是否是偏手指;再次,通過圖像塊的對比度的大小來判斷是干手指或濕手指(干手指對比度較大,濕手指對比度較?。?br /> 四、指紋圖像的分割
在指紋圖像質(zhì)量評估合格后,需要對圖像進行灰度變換,即對指紋圖像均衡化,使得圖像灰度均衡,以及對圖像進行歸一化。在這些完成之后,還需要對圖像按照一定的算法和要求進行分割。即把指紋圖像中質(zhì)量很差,后期無法處理的圖像區(qū)域與有效區(qū)域進行區(qū)分,使后期處理集中到有效區(qū)域上,提供特征提取精度,減少處理時間。目前,常用的分割方法有以下幾種:
?。?)基于方向圖的分割方法:
根據(jù)圖像上紋理的方向,區(qū)分指紋區(qū)域和背景區(qū)域,然后按照不同的區(qū)域分割。如果指紋的紋理線不連續(xù)、圖像的灰度 單一等方向難以正確估計或者有些區(qū)域變化劇烈,則此方法不能進行有效的分割。
(2)基于圖像的局部灰度均值、局部標準差和局部一致性的分割方法:
利用指紋圖像局部區(qū)域的灰度均值、標準差和一致性作為特征,再采用線性分類來分割指紋圖像。局部圖像的一致性顯示了局部圖像的紋理走向,但是這些特征對于模糊區(qū)域無法做出有效的表示。
?。?)多級分割法:
就是將指紋圖像進行多級分割,逐級減少分割的范圍。例如:第一級分割圖像的背景區(qū)域,第二級在前景區(qū)域中分割出模糊區(qū)域,第三級從模糊區(qū)域中分割出不可恢復區(qū)域。
(4)動態(tài)閾值分割法:
根據(jù)各個子塊的局部灰度對比度自動調(diào)節(jié)閾值,基于像素的方差進行分割。該方法簡單、快捷、分割效果好。具體為:將圖像劃分為不重疊的各個子塊;計算每個子塊的平均灰度和灰度方差;計算方差最大值與最小值之間的差值;定義動態(tài)閾值,并分割圖像;平滑操作,去除孤立塊。
五、指紋圖像的增強
指紋圖像增強就是將模糊的指紋紋理改變得更加清晰,例如:將斷裂的指紋紋線進行連接,把連接的紋線區(qū)分開,而且在這個過程中還需要保持原有的指紋圖像結(jié)構(gòu),使圖像更加易于提取特征信息。目前,有以下幾種指紋圖像增強方法:
?。?)從脊線方向上采用平滑算子而在垂直于脊線的方向使用增強算子的圖像增強算法。這種算法在理論上是十分正確的,但是要估計出脊線寬度以及濾波的參數(shù)卻比較困難。如果參數(shù)估計有誤,則會使得脊線產(chǎn)生污染,并且對于脊線上有折痕的指紋會產(chǎn)生偏差。
(2)基于Gabor 濾波器的指紋圖像增強算法。此算法是在使用上一方法之前先進行濾波。將指紋圖像分成不同的區(qū)域,有效削弱垂直于主導紋線方向的噪聲,提高方向信息提取的可靠性。
?。?)傅立葉增強后濾波的方法?;跁r間和處理效果的考慮,先采用傅立葉變換來增強指紋圖像,然后使用濾波器來修補指紋圖像的紋線。具體為:首先,多級分割出可恢復區(qū)域塊,將該塊像素變?yōu)閺蛿?shù)形式;利用離散傅立葉變換,濾掉頻率過高或過低的頻帶噪點;利用方向濾波器消除指紋的斷裂和叉連。
六、指紋圖像的提取
在細化圖像的基礎上提取
首先,需要對指紋圖像進行細化處理,將指紋紋線變細,然后通過分析紋線上每一個像素點的8 個方向上的連接點來判定該像素點的類型、位置,并且通過分析該像素點所連接的紋線段來判斷點位的方向,進而提取出特征點。這個方法存在的優(yōu)點是原理比較簡單而且容易實現(xiàn);缺點是需要對大量的像素點進行細化處理,時間較慢,當圖像質(zhì)量不高時,細化處理會產(chǎn)生很多雜質(zhì)項。
從原始灰度圖像上直接提取
利用指紋方向圖,在灰度圖像上跟蹤指紋的紋線,每跟蹤一定的長度,根據(jù)圖像的投影極值來確定紋線的位置,當遇到端點和分叉點時無法投影,跟蹤過程自動終止。這個方法的優(yōu)點是具有較高的效率和精度;缺 點是實現(xiàn)起來比較復雜,需要大量的運算,而且當圖像質(zhì)量不高時,求出的方向圖可能不可靠,導致跟蹤出的紋線出現(xiàn)偏差。
伴隨移動支付業(yè)務的火爆,指紋識別技術(shù)已成為今天智能手機的標配,而在CMOS圖像傳感器/TFT顯示屏、超音波偵測等新技術(shù)的不斷助推下,更讓其市場迎來了發(fā)展的新春。
據(jù)調(diào)研機構(gòu)Yole預測,未來5年,指紋識別市場的復合年增率(CAGR)將達到19%,市場規(guī)模有望從2016年的28億美元,增加到2022年的47億美元。
最初只是作為方便手機解鎖功能的元器件——指紋識別傳感器,如今在智能手機移動支付業(yè)務的帶動下,已經(jīng)變成要為移動支付把關的重要安全元素。據(jù)業(yè)內(nèi)人士分析,目前的指紋識別市場,大多來自于OEM廠對全玻璃設計與防水功能的需求。這促使CMOS/TFT、超音波偵測等新技術(shù),進一步推動高整合型指紋識別技術(shù)的演進。
據(jù)統(tǒng)計,2016年的指紋識別傳感器的出貨量已達6.89億顆,相較2013年的2300萬顆,CAGR達到210%。當然,大量的需求也促使指紋識別傳感器均價的走低,目前已從5美元下滑到3美元,甚至更低,未來供應商仍將繼續(xù)面臨價格壓力。
指紋識別市場對傳感器制造商來說具有較高彈性,雖然今后5年的市場規(guī)模非??捎^,但如何在激烈的市場競爭中脫穎而出,仍然是考驗相關廠商的一道難題。
二、指紋識別的原理
指紋識別技術(shù)包含有以下兩種主要的識別技術(shù):
第一種是采用不同指紋圖像統(tǒng)計對比的方法;
第二種是采用指紋圖像本身固有的特征信息進行比對的方法。
第一種方法主要是將兩幅指紋圖像進行統(tǒng)計對比,查看他們之間相似度的大小,根據(jù)大小來判斷這兩幅指紋是否取自于同一個人,從而實現(xiàn)身份識別的作用。第二種方法是根據(jù)兩幅指紋圖像的結(jié)構(gòu)特征,比較他們的特征信息,確認他們的身份。特征包含兩種類型:全局特征類型和局部特征類型。
指紋識別技術(shù)的全過程是:
?。?)使用指紋采集設備采集指紋圖像。
(2)對指紋圖像中的大量噪聲點進行預處理,從而提升后面處理的效率。在預處理之后,得到了一個關于指紋圖像的輪廓線,為下一步特征提取做準備。
?。?)進行指紋圖像的特征提取,提取出其特征信息點。
(4)對指紋圖像進行特征匹配,把提取的特征點與數(shù)據(jù)庫中預存的特征點進行比對,通過比對來判斷身份。根據(jù)英國學者E.R.Herry 的研究發(fā)現(xiàn),兩個指紋圖像中,如果特征點的對數(shù)有13 對是重合的,就可以認為這兩個圖像取自于同一個人。
指紋識別系統(tǒng)的主要性能參數(shù)有以下幾種:
?。?)誤識率:指兩個不同指紋被錯誤地識別成相同指紋的概率;
?。?)拒識率:指同一個手指的兩個不同指紋樣本不能匹配,即被認為來自不同手指的概率;
?。?)等錯誤率:第一和第二種錯誤相等時的數(shù)值;
?。?) 注冊時間:從指紋被采集到完成指紋特征提出所需要消耗的時間;
(5) 匹配時間:兩個指紋樣本進行一次對比匹配所需要消耗的時間;
?。?) 模板特征的大小:從一個指紋圖像中提取出的指紋特征的存儲容量;
(7)分配內(nèi)存的大?。涸谥讣y識別的各個階段,計算機系統(tǒng)需要占用的內(nèi)存數(shù)量。
三、指紋圖像的質(zhì)量評估
在通過指紋采集設備把圖像采集進入系統(tǒng)之后,我們需要對采集到的指紋圖像的質(zhì)量進行評估。如果圖像的質(zhì)量不達標,就會對后期產(chǎn)生影響。因此,需要對指紋圖像進行評估。目前,指紋圖像的質(zhì)量評估有以下幾種方法:
(1)計算圖像的信噪比:
這種方法是指求出圖像的信號與噪聲的方差之比。首先計算圖像所有像素的局部方差,將局部方差的最大值設為信號方差,最小值設為噪聲方差,求出它們的比值,再轉(zhuǎn)成dB 數(shù),最后用經(jīng)驗公式進行修正。此方法在效率方面表現(xiàn)一般。
(2)統(tǒng)計指紋圖像細節(jié)點的數(shù)量:
對指紋圖像中細節(jié)點的數(shù)量進行識別和統(tǒng)計。通過數(shù)量的多少來判斷該指紋圖像的質(zhì)量是否在合格的范圍之內(nèi)。此方法理論上可行,但是由于首先需要對指紋進行預處理、提取細節(jié)點,因此效率不高。
?。?)視覺客觀測度:
該方法建立在視覺測評過程和客觀測度基礎上,利用設定的評測參數(shù),對指紋圖像的質(zhì)量評價出一個綜合結(jié)果。這一方法從全局上對指紋圖像的質(zhì)量,能夠得出很好的判斷。但是從局部上來看,指紋的紋理分析缺少了對指紋方向信息的判斷。
(4)計算指紋圖像方向信息:
從指紋圖像局部特征開始,結(jié)合指紋的全局特征來判斷指紋圖像的質(zhì)量。通過檢測圖像的有效面積和清晰度,來確定圖像是否合格。具體方法是:首先,通過計算圖像方向信息,確定前景塊和背景塊;然后,通過比較前景塊和背景塊的比例來判斷是否是偏手指;再次,通過圖像塊的對比度的大小來判斷是干手指或濕手指(干手指對比度較大,濕手指對比度較?。?br /> 四、指紋圖像的分割
在指紋圖像質(zhì)量評估合格后,需要對圖像進行灰度變換,即對指紋圖像均衡化,使得圖像灰度均衡,以及對圖像進行歸一化。在這些完成之后,還需要對圖像按照一定的算法和要求進行分割。即把指紋圖像中質(zhì)量很差,后期無法處理的圖像區(qū)域與有效區(qū)域進行區(qū)分,使后期處理集中到有效區(qū)域上,提供特征提取精度,減少處理時間。目前,常用的分割方法有以下幾種:
?。?)基于方向圖的分割方法:
根據(jù)圖像上紋理的方向,區(qū)分指紋區(qū)域和背景區(qū)域,然后按照不同的區(qū)域分割。如果指紋的紋理線不連續(xù)、圖像的灰度 單一等方向難以正確估計或者有些區(qū)域變化劇烈,則此方法不能進行有效的分割。
(2)基于圖像的局部灰度均值、局部標準差和局部一致性的分割方法:
利用指紋圖像局部區(qū)域的灰度均值、標準差和一致性作為特征,再采用線性分類來分割指紋圖像。局部圖像的一致性顯示了局部圖像的紋理走向,但是這些特征對于模糊區(qū)域無法做出有效的表示。
?。?)多級分割法:
就是將指紋圖像進行多級分割,逐級減少分割的范圍。例如:第一級分割圖像的背景區(qū)域,第二級在前景區(qū)域中分割出模糊區(qū)域,第三級從模糊區(qū)域中分割出不可恢復區(qū)域。
(4)動態(tài)閾值分割法:
根據(jù)各個子塊的局部灰度對比度自動調(diào)節(jié)閾值,基于像素的方差進行分割。該方法簡單、快捷、分割效果好。具體為:將圖像劃分為不重疊的各個子塊;計算每個子塊的平均灰度和灰度方差;計算方差最大值與最小值之間的差值;定義動態(tài)閾值,并分割圖像;平滑操作,去除孤立塊。
五、指紋圖像的增強
指紋圖像增強就是將模糊的指紋紋理改變得更加清晰,例如:將斷裂的指紋紋線進行連接,把連接的紋線區(qū)分開,而且在這個過程中還需要保持原有的指紋圖像結(jié)構(gòu),使圖像更加易于提取特征信息。目前,有以下幾種指紋圖像增強方法:
?。?)從脊線方向上采用平滑算子而在垂直于脊線的方向使用增強算子的圖像增強算法。這種算法在理論上是十分正確的,但是要估計出脊線寬度以及濾波的參數(shù)卻比較困難。如果參數(shù)估計有誤,則會使得脊線產(chǎn)生污染,并且對于脊線上有折痕的指紋會產(chǎn)生偏差。
(2)基于Gabor 濾波器的指紋圖像增強算法。此算法是在使用上一方法之前先進行濾波。將指紋圖像分成不同的區(qū)域,有效削弱垂直于主導紋線方向的噪聲,提高方向信息提取的可靠性。
?。?)傅立葉增強后濾波的方法?;跁r間和處理效果的考慮,先采用傅立葉變換來增強指紋圖像,然后使用濾波器來修補指紋圖像的紋線。具體為:首先,多級分割出可恢復區(qū)域塊,將該塊像素變?yōu)閺蛿?shù)形式;利用離散傅立葉變換,濾掉頻率過高或過低的頻帶噪點;利用方向濾波器消除指紋的斷裂和叉連。
六、指紋圖像的提取
在細化圖像的基礎上提取
首先,需要對指紋圖像進行細化處理,將指紋紋線變細,然后通過分析紋線上每一個像素點的8 個方向上的連接點來判定該像素點的類型、位置,并且通過分析該像素點所連接的紋線段來判斷點位的方向,進而提取出特征點。這個方法存在的優(yōu)點是原理比較簡單而且容易實現(xiàn);缺點是需要對大量的像素點進行細化處理,時間較慢,當圖像質(zhì)量不高時,細化處理會產(chǎn)生很多雜質(zhì)項。
從原始灰度圖像上直接提取
利用指紋方向圖,在灰度圖像上跟蹤指紋的紋線,每跟蹤一定的長度,根據(jù)圖像的投影極值來確定紋線的位置,當遇到端點和分叉點時無法投影,跟蹤過程自動終止。這個方法的優(yōu)點是具有較高的效率和精度;缺 點是實現(xiàn)起來比較復雜,需要大量的運算,而且當圖像質(zhì)量不高時,求出的方向圖可能不可靠,導致跟蹤出的紋線出現(xiàn)偏差。
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- AS60x指紋識別SOC用戶手冊 51次下載
- 由淺入深,了解指紋識別資料下載
- 基于DSP實現(xiàn)指紋識別算法的設計方案 23次下載
- ATK-AS608指紋識別模塊用戶手冊資料免費下載 78次下載
- 新型指紋識別器的設計資料 9次下載
- 指紋識別及數(shù)碼管顯示電路 41次下載
- 基于DSP的新型指紋識別系統(tǒng)分析 1次下載
- DSP指紋識別系統(tǒng)設計 7次下載
- 指紋識別技術(shù)原理與基于Linux系統(tǒng)的指紋識別門禁系統(tǒng)設計 5次下載
- 關于ARM的嵌入式指紋識別系統(tǒng) 8次下載
- DSP上的指紋識別模塊的實現(xiàn) 20次下載
- 指紋識別matlab源代碼 86次下載
- 指紋識別系統(tǒng)的設計與實現(xiàn)
- 基于FPGA 的指紋識別算法硬件實現(xiàn) 0次下載
- acer TravelMate 6293 指紋識別驅(qū)動下載
- 超聲波指紋識別技術(shù)原理 超聲波指紋識別和短焦區(qū)別 5149次閱讀
- 基于機器學習的應用系統(tǒng)指紋識別技術(shù)研究 939次閱讀
- 指紋識別的實現(xiàn)方式 8276次閱讀
- 關于指紋識別技術(shù)的基本原理知識及過程詳解 2.9w次閱讀
- 指紋識別算法的嵌入式系統(tǒng)的設計方法及過程 5955次閱讀
- 屏下指紋識別技術(shù)方案及屏下指紋識別技術(shù)相關廠商匯總 1.1w次閱讀
- 指紋識別真的安全嗎?帶你了解指紋識別全過程 963次閱讀
- 手機指紋識別并不安全 指紋識別度的比率達到20%就能解鎖 8611次閱讀
- 什么是屏下指紋技術(shù)_屏下指紋識別原理解析 10.1w次閱讀
- 屏下指紋識別原理介紹_屏下指紋識別技術(shù)原理分析 9.5w次閱讀
- 基于單片機系統(tǒng)的指紋識別方案和設計要點介紹 1918次閱讀
- 基于STM32芯片的指紋識別系統(tǒng)設計與實現(xiàn) 2.2w次閱讀
- 2015全球指紋識別芯片公司,你了解多少? 2409次閱讀
- 側(cè)面指紋識別方案的技術(shù)難點 1111次閱讀
- 中國十大指紋識別芯片企業(yè)盤點 5.4w次閱讀
下載排行
本周
- 1TC358743XBG評估板參考手冊
- 1.36 MB | 330次下載 | 免費
- 2開關電源基礎知識
- 5.73 MB | 11次下載 | 免費
- 3100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
- 4嵌入式linux-聊天程序設計
- 0.60 MB | 3次下載 | 免費
- 5DIY動手組裝LED電子顯示屏
- 0.98 MB | 3次下載 | 免費
- 6基于FPGA的C8051F單片機開發(fā)板設計
- 0.70 MB | 2次下載 | 免費
- 751單片機PM2.5檢測系統(tǒng)程序
- 0.83 MB | 2次下載 | 免費
- 8基于51單片機的RGB調(diào)色燈程序仿真
- 0.86 MB | 2次下載 | 免費
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費
- 2555集成電路應用800例(新編版)
- 0.00 MB | 33566次下載 | 免費
- 3接口電路圖大全
- 未知 | 30323次下載 | 免費
- 4開關電源設計實例指南
- 未知 | 21549次下載 | 免費
- 5電氣工程師手冊免費下載(新編第二版pdf電子書)
- 0.00 MB | 15349次下載 | 免費
- 6數(shù)字電路基礎pdf(下載)
- 未知 | 13750次下載 | 免費
- 7電子制作實例集錦 下載
- 未知 | 8113次下載 | 免費
- 8《LED驅(qū)動電路設計》 溫德爾著
- 0.00 MB | 6656次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935054次下載 | 免費
- 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
- 78.1 MB | 537797次下載 | 免費
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420027次下載 | 免費
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費
- 6電路仿真軟件multisim 10.0免費下載
- 340992 | 191186次下載 | 免費
- 7十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183279次下載 | 免費
- 8proe5.0野火版下載(中文版免費下載)
- 未知 | 138040次下載 | 免費
評論
查看更多