電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示
創(chuàng)作
電子發(fā)燒友網(wǎng)>電子資料下載>模擬數(shù)字>常見信號鏈設(shè)計的難點及數(shù)據(jù)采集系統(tǒng)設(shè)計的挑戰(zhàn)資料下載

常見信號鏈設(shè)計的難點及數(shù)據(jù)采集系統(tǒng)設(shè)計的挑戰(zhàn)資料下載

2021-04-23 | pdf | 1.19MB | 次下載 | 2積分

資料介紹

簡介 許多應(yīng)用都要求采用精密數(shù)據(jù)采集信號鏈以數(shù)字化模擬數(shù)據(jù), 從而實現(xiàn)數(shù)據(jù)的精確采集和處理。精密系統(tǒng)設(shè)計師面臨越來越 大的壓力,需要找到創(chuàng)新的辦法,提高性能、降低功耗,同時 還要在小型PCB電路板上容納更高的電路密度。本文旨在討論精 密數(shù)據(jù)采集信號鏈設(shè)計中遇到的常見難點,探討如何運用新一 代16位/18位、2 MSPS、精密逐次逼近寄存器(SAR) ADC解決這些難 點。AD4000/AD4003(16位/18位)ADC基于ADI的高級技術(shù)設(shè)計而 成,集成了多種簡單易用的特性,具有多種系統(tǒng)級優(yōu)勢,有助 于降低信號鏈功耗,降低信號鏈復(fù)雜性,提高通道密度,同時 還能提高性能水平。本文將重點討論數(shù)據(jù)采集子系統(tǒng)性能和設(shè) 計挑戰(zhàn),說明該ADC系列如何在多個終端市場形成應(yīng)用級影響。 常見的信號鏈設(shè)計難點 圖1顯示了在構(gòu)建精密數(shù)據(jù)采集系統(tǒng)時使用的典型信號鏈。要求 精密數(shù)據(jù)采集系統(tǒng)的應(yīng)用(如自動化測試設(shè)備、機(jī)械自動化、工 業(yè)和醫(yī)療儀器儀表)呈現(xiàn)出通常被認(rèn)為在技術(shù)上相沖突的共同趨 勢。例如,系統(tǒng)設(shè)計師被迫在性能上妥協(xié),以維持緊張的系統(tǒng)功 率預(yù)算,或者在電路板上保留較小的面積以實現(xiàn)高通道密度。這 些精密數(shù)據(jù)采集信號鏈的系統(tǒng)設(shè)計師在多個方面面臨著共同的挑 戰(zhàn):驅(qū)動SAR ADC輸入;保護(hù)ADC輸入以使其免受過壓事件影響; 用單電源降低系統(tǒng)功耗;用低功耗微控制器和/或數(shù)字隔離器實現(xiàn) 更高的系統(tǒng)吞吐量等。 圖1. 典型的精密數(shù)據(jù)采集信號鏈 受開關(guān)電容輸入結(jié)構(gòu)影響,高分辨率精密SAR ADC的驅(qū)動一直是個 棘手的問題。系統(tǒng)設(shè)計師需要密切關(guān)注ADC驅(qū)動器數(shù)據(jù)手冊,了解 噪聲、失真、輸入/輸出電壓上裕量/下裕量、帶寬和建立時間等技 術(shù)規(guī)格。一般地,采用的高速ADC驅(qū)動器需要具備寬帶寬、低噪聲 和高功率等特征,以便在可用采集時間內(nèi)建立SAR ADC輸入的開關(guān) 電容反沖。這項要求會大幅減少用于驅(qū)動ADC的可用放大器選擇, 不得不在性能/功率/面積方面進(jìn)行大幅妥協(xié)。另外,選擇一款合適的RC濾波器置于驅(qū)動器與ADC輸入之間,這項要求又對放大器選擇 和性能構(gòu)成了進(jìn)一步的限制。ADC驅(qū)動器輸出與SAR ADC輸入之間需 要用RC濾波器來限制寬帶噪聲,減少電荷反沖的影響。一般情況 下,系統(tǒng)設(shè)計師需要花費大量時間去評估信號鏈,確保所選ADC驅(qū) 動器和RC濾波器能切實驅(qū)動ADC,以實現(xiàn)所需性能。 在功耗敏感型應(yīng)用(如電池供電儀器儀表)中,通常需要用低壓 單電源來運行系統(tǒng)。這雖然最大限度地降低了電路的功耗,但卻 給放大器前端帶來了上裕量和下裕量問題。這意味著,可能無法 使用ADC輸入的全部范圍,因為驅(qū)動放大器無法一直驅(qū)動到地, 也無法一直驅(qū)動到ADC輸入范圍的上限,結(jié)果會降低整個系統(tǒng)的 性能。這種情況可以通過提高電源電壓來彌補(bǔ),但其代價是會增 加功耗,或者造成系統(tǒng)的動態(tài)范圍性能下降。 多數(shù)ADC模擬輸入(IN 和IN?)除ESD保護(hù)二極管以外沒有過壓保 護(hù)電路。在放大器電軌大于VREF且小于地的應(yīng)用中,輸出有可能 超過器件的輸入電壓范圍。在過壓事件中,兩個連接REF的模擬 輸入(IN 或IN?)引腳之間的ESD保護(hù)二極管正向偏置連接REF的輸 入引腳并使其短路,有可能使基準(zhǔn)電壓源過載,導(dǎo)致器件損毀, 或者干擾在多個ADC之間共用的基準(zhǔn)電壓源。結(jié)果就需要為ADC輸 入添加肖特基二極管一類的保護(hù)電路,避免過壓條件損害ADC。不 幸的是,肖特基二極管可能會因漏電流而增加失真及其他誤差。 精密應(yīng)用在連接ADC的處理器方面有著不同的需求。出于安全考 慮,有些應(yīng)用需要使用電氣隔離機(jī)制,并在ADC與處理器之間使 用數(shù)字隔離器來實現(xiàn)這個目的。這種處理器選擇和隔離需求對用 于連接ADC的數(shù)字接口的效率形成了限制。一般地,低端處理器/ FPGA或低功耗微控制器都擁有較低的串行時鐘速率。這可能導(dǎo)致 ADC的吞吐量低于預(yù)期,因為在輸出轉(zhuǎn)換結(jié)果之前存在較長的ADC 轉(zhuǎn)換延時。數(shù)字隔離器也可能限制在隔離柵上可以實現(xiàn)的最大串 行時鐘速率,因為隔離器中的傳播延遲會限制ADC吞吐量。在這些 情況下,最好使用既可實現(xiàn)更高吞吐速率,又無需大幅增加串行 時鐘速率的ADC。 AD4000/AD4003精密SAR ADC系列可以解決常見設(shè)計挑戰(zhàn) AD4000/AD4003系列是基于SAR架構(gòu)的快速、低功耗、單電源、16 位/18位精密ADC。 AD4000/AD4003精密ADC系列將高性能與簡單易用的特性獨特地結(jié) 合在一起,可以降低系統(tǒng)復(fù)雜性,簡化信號鏈BOM,并大幅縮短 上市時間(見圖2)。借助該系列,設(shè)計師可以解決精密數(shù)據(jù)采 集系統(tǒng)的系統(tǒng)級技術(shù)挑戰(zhàn),并且無需做出重大折衷。例如,留給 用戶更長的采集時間、高輸入阻抗(Z)模式和跨度壓縮模式等特性 在AD4000/AD4003 ADC系列中的結(jié)合可以減少與ADC驅(qū)動器級設(shè)計 相關(guān)的挑戰(zhàn),增加ADC驅(qū)動器選擇的靈活性。這樣就可以降低系統(tǒng) 總功耗,提高密度,縮短客戶設(shè)計周期。通過SPI接口寫入配置寄 存器,可以使能/禁用多數(shù)簡單易用的特性。注意,AD4000/AD4003 ADC系列與10引腳AD798x/AD769x ADC系列引腳兼容。 圖2. AD4000/AD4003 ADC的主要優(yōu)勢 AD4000/AD4003 ADC簡單易用的特性 長采集階段 AD4000/AD4003 ADC擁有更短的轉(zhuǎn)換時間290 ns,ADC會在當(dāng)前轉(zhuǎn)換 過程結(jié)束前100 ns返回采集階段。SAR ADC周期時間由轉(zhuǎn)換階段和采 集階段構(gòu)成。在轉(zhuǎn)換階段,ADC電容DAC與ADC輸入斷開,以執(zhí)行 SAR轉(zhuǎn)換。輸入在采集階段重新連接,ADC驅(qū)動器必須在下一個轉(zhuǎn) 換階段開始之前將輸入建立至正確的電壓。較長的采集階段可以 降低對驅(qū)動放大器的建立要求,并且允許較低的RC濾波器截止頻 率,這意味著可以使用噪聲較高且/或功率/帶寬較低的放大器。 可以在RC濾波器中使用較大的R值和較小的對應(yīng)C值,減少放大器 穩(wěn)定性問題,同時也不會大幅影響失真性能。較大的R值有助于在 過壓條件下保護(hù)ADC輸入;同時還能降低放大器中的動態(tài)功耗。 高輸入阻抗模式 為了達(dá)到高分辨率精密SAR ADC數(shù)據(jù)手冊中列示的最佳性能,系統(tǒng) 設(shè)計師通常不得不使用專用的高功率、高速放大器來驅(qū)動其精密 應(yīng)用中的傳統(tǒng)型開關(guān)電容SAR ADC輸入。這是在精密數(shù)據(jù)采集信 號鏈設(shè)計中經(jīng)常遇到的難點之一。高Z模式的優(yōu)勢在于,能在慢 速( AD4000/AD4003 ADC集成了一個高Z模式,在采集開始時,可以在 電容DAC切換回輸入時減少非線性電荷反沖。在使能高Z模式時, 電容DAC在轉(zhuǎn)換結(jié)束時充電,以保持上次采樣的電壓。這一過程 可以減少轉(zhuǎn)換過程的任何非線性電荷效應(yīng),該效應(yīng)會影響到下次 采樣前在ADC輸入端采集的電壓。 圖3所示為AD4000/AD4003 ADC在高Z模式使能/禁用時的輸入電流。 低輸入電流使ADC比市場上現(xiàn)有的傳統(tǒng)SAR ADC更易驅(qū)動,即便是 在高Z模式禁用的情況下。如果將圖3中高Z模式禁用時的輸入電 流與上一代AD7982 ADC的輸入電流進(jìn)行比較,則會發(fā)現(xiàn),AD4003 已經(jīng)將1 MSPS條件下的輸入電流降低了4倍。高Z模式使能時,輸 入電流進(jìn)一步降至次微安級。在輸入頻率超過100 kHz時,或者在 多路復(fù)用輸入時,應(yīng)禁用高Z模式。 借助AD4000/AD4003 ADC降低的輸入電流,就能以比傳統(tǒng)SAR高得 多的源阻抗來驅(qū)動。這意味著,RC濾波器中的電阻值可以比傳統(tǒng) SAR設(shè)計大10倍。 圖3. 在高Z使能/禁用條件下的AD4003 ADC輸入電流與輸入差分電壓 如圖4所示,AD4000/AD4003 ADC允許用帶較低截止頻率的RC濾波 器的多種低功率/帶寬精密放大器來驅(qū)動ADC,消除了使用專用高 速ADC驅(qū)動器的必要性,并且可以降低精密低帶寬應(yīng)用(信號帶 寬 圖4. 傳統(tǒng)精密信號鏈 圖5和圖6所示為AD4003 ADC的SNR和THD性能,其中,在使能/禁用 高Z及各種不同RC濾波器值的情況下,以2 MSPS的全速吞吐量驅(qū) 動AD4003 ADC時,使用的是ADA4077 (IQUIESCENT = 400 μA/放大器), ADA4084 (IQUIESCENT = 600 μA/放大器), and ADA4610 (IQUIESCENT = 1.5 mA/放大器) 精密放大器。在2.27 MHz RC帶寬和1 kHz輸入信號條件下使能 高Z時,這些放大器可實現(xiàn)96 dB至99 dB的典型SNR以及優(yōu)于–110 dB 的典型THD。在使能高Z模式時,甚至在R值大于200 Ω時,THD約改 善了10 dB。即使在超低RC濾波器截止頻率條件下,最高SNR也接 近99 dB。 在使能高Z時,ADC消耗約2 mW/MSPS的額外功耗,但這仍然顯著 低于使用ADA4807-1 一類的專用ADC驅(qū)動器時的功耗,從而可以節(jié) 省PCB電路板面積和物料成本。對于多數(shù)系統(tǒng),前端通常會限制 信號鏈可以實現(xiàn)的整體交流/直流性能。從圖5和圖6所選的精密 放大器數(shù)據(jù)手冊中可以看出,精密放大器自身的噪聲和失真性 能在某個輸入頻率下主導(dǎo)著SNR和THD規(guī)格。然而,帶高Z模式的 AD4003 ADC可以極大地增加驅(qū)動器放大器的選擇,包括信號調(diào)理 級中使用的精密放大器,同時還可提高RC濾波器選擇的靈活性。 例如,當(dāng)AD4003 ADC的高Z使能并配合 ADA4084-2 驅(qū)動器放大器使 用一個4.42 MHz寬帶輸入濾波器時,SNR性能約為95 dB。如果用 498 kHz濾波器對ADC驅(qū)動器噪聲進(jìn)行強(qiáng)力濾波,SNR可提升3 dB, 至98 dB。AD7982 ADC在較低RC截止頻率下的SNR性能下降是因為 該ADC輸入未在較短的采集時間內(nèi)消除反沖。 圖5. 使用ADA4077、ADA4084和ADA4610精密放大器時的SNR與RC帶寬 圖6. 使用ADA4077、ADA4084和ADA4610精密放大器時的THD與RC帶寬 圖7(a)表明,系統(tǒng)設(shè)計師可以使用功率低2.5倍的ADC驅(qū)動器ADA4077 (相比ADA4807),在高Z模式禁用時,AD4003 ADC仍然能取得 約97 dB的SINAD(比AD7982 ADC高3 dB)。即使RC帶寬增加至2.9 MHz,ADA4077放大器也無法直接驅(qū)動AD7982 ADC并取得最佳性 能。如果用較低的RC帶寬截止頻率強(qiáng)力濾波,驅(qū)動器無法在可用 采集時間內(nèi)消除ADC反沖,ADC SINAD性能因而下降。在禁用或使能 高Z模式時,AD4003 ADC的開關(guān)電容反沖大幅縮減,在1 MSPS時的 采集時間長2.5倍,因此,其SINAD性能仍然大幅優(yōu)于AD7982 ADC。 在使能高Z模式時,在較低RC濾波器截止頻率下使用兩個ADC驅(qū)動 器,AD4003 ADC的SINAD性能較好,這有助于在目標(biāo)信號寬帶較低 時,消除更多來自上游信號鏈組件的寬帶噪聲。在不使能高Z模式 時,RC濾波器截止頻率與SINAD性能之前存在折衷。 圖7. 使用ADA4077和ADA4807時AD4003 ADC和AD7982 ADC放大器驅(qū)動器的比較:在禁用和使能高Z模式時的SINAD與RC帶寬(FS = 1 MSPS, fIN = 1 kHz). 跨度壓縮 AD4000/AD4003 ADC集成了一個跨度壓縮模式,對僅用一個單電源 為SAR ADC驅(qū)動器供電的系統(tǒng)非常有用。該模式可以消除ADC驅(qū)動 器對負(fù)電源的要求,同時還能維持ADC的全分辨率,減少功耗, 降低電源設(shè)計復(fù)雜程度。如圖8所示,ADC可執(zhí)行數(shù)字縮放功能, 映射從0 V至0.1 V × VREF的零電平代碼,以及從VREF至0.9 × VREF的滿量 程代碼。在減小的輸入范圍內(nèi),AD4000/AD4003 ADC的SNR約為~1.9dB (20*log(4/5))。舉例來說,對于采用5 V單電源且典型基準(zhǔn)電壓為 4.096 V的子系統(tǒng),滿量程輸入范圍為~0.41 V至3.69 V,為驅(qū)動放大 器提供了充足的裕量。 圖8. AD4000/AD4003 ADC跨度壓縮工作模式 過壓箝位 在放大器電軌大于VREF且小于地電壓的應(yīng)用中,輸出可以超出器 件的輸入電壓范圍。當(dāng)正輸入超過范圍時,電流通過D1流入REF (見圖9),對基準(zhǔn)電壓源形成干擾。甚至更加糟糕的是,可能將 基準(zhǔn)電壓源拉高至絕對最大基準(zhǔn)值的水平,因而可能損壞器件。 當(dāng)模擬輸入超過基準(zhǔn)電壓~400 mV時,AD4000/AD4003 ADC的內(nèi)部 箝位電路將開啟,電流將通過箝位流入地,防止輸入進(jìn)一步升高 而可能損壞器件。 圖9. AD4003 ADC等效模擬輸入電路 如圖9所示,AD4000/AD4003 ADC的內(nèi)部過壓箝位電路有一個較大的 外部電阻(REXT = 200Ω),可以消除外部保護(hù)二極管的必要性(并由 此消除額外電路板空間的必要性)。箝位在D1之前開啟,其最大 吸電流能力為50 mA。箝位電路通過將輸入電壓箝位在安全工作 范圍中來防止器件損壞,同時避免對基準(zhǔn)電壓源造成干擾,這對 在多個ADC之間共用基準(zhǔn)電壓源的系統(tǒng)來說尤其重要。 高效數(shù)字接口 AD4000/AD4003 ADC有一個靈活的數(shù)字串行接口,有七種不同的 模式,并且具有寄存器編程能力。其Turbo模式允許用戶在ADC仍 在轉(zhuǎn)換時開始輸出上次轉(zhuǎn)換的結(jié)果,如圖10所示。短轉(zhuǎn)換時間和 Turbo模式相結(jié)合,可實現(xiàn)較低的SPI時鐘速率,簡化隔離解決方 案,降低數(shù)字隔離器的延遲要求,增加處理器選擇,包括低端處 理器/FPGA或者串行時鐘速率相對低的低功耗微控制器。例如, 運行于1 MSPS時,AD4003 ADC可以使用比AD7982 ADC慢2.5倍的SPI 時鐘速率(25 MHz相比于66 MHz)。用戶可以寫/讀回寄存器位, 以使能AD4000/AD4003 ADC簡單易用的特性,可以在轉(zhuǎn)換結(jié)果上附 加一個6位的狀態(tài)字,實現(xiàn)診斷和寄存器讀回。串行接口規(guī)格完 全支持低至1.8 V的邏輯電平,可以在這些條件下實現(xiàn)2 MSPS全速吞吐量。使能Turbo模式時,要在2 MSPS條件下運行AD4003 ADC, 需要的最低SCK速率為75 MHz。 圖10. AD4003 ADC的Turbo工作模式
下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1電子電路原理第七版PDF電子教材免費下載
  2. 0.00 MB  |  1490次下載  |  免費
  3. 2單片機(jī)典型實例介紹
  4. 18.19 MB  |  92次下載  |  1 積分
  5. 3S7-200PLC編程實例詳細(xì)資料
  6. 1.17 MB  |  27次下載  |  1 積分
  7. 4筆記本電腦主板的元件識別和講解說明
  8. 4.28 MB  |  18次下載  |  4 積分
  9. 5開關(guān)電源原理及各功能電路詳解
  10. 0.38 MB  |  10次下載  |  免費
  11. 6基于AT89C2051/4051單片機(jī)編程器的實驗
  12. 0.11 MB  |  4次下載  |  免費
  13. 7藍(lán)牙設(shè)備在嵌入式領(lǐng)域的廣泛應(yīng)用
  14. 0.63 MB  |  3次下載  |  免費
  15. 89天練會電子電路識圖
  16. 5.91 MB  |  3次下載  |  免費

本月

  1. 1OrCAD10.5下載OrCAD10.5中文版軟件
  2. 0.00 MB  |  234313次下載  |  免費
  3. 2PADS 9.0 2009最新版 -下載
  4. 0.00 MB  |  66304次下載  |  免費
  5. 3protel99下載protel99軟件下載(中文版)
  6. 0.00 MB  |  51209次下載  |  免費
  7. 4LabView 8.0 專業(yè)版下載 (3CD完整版)
  8. 0.00 MB  |  51043次下載  |  免費
  9. 5555集成電路應(yīng)用800例(新編版)
  10. 0.00 MB  |  33562次下載  |  免費
  11. 6接口電路圖大全
  12. 未知  |  30320次下載  |  免費
  13. 7Multisim 10下載Multisim 10 中文版
  14. 0.00 MB  |  28588次下載  |  免費
  15. 8開關(guān)電源設(shè)計實例指南
  16. 未知  |  21539次下載  |  免費

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935053次下載  |  免費
  3. 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
  4. 78.1 MB  |  537791次下載  |  免費
  5. 3MATLAB 7.1 下載 (含軟件介紹)
  6. 未知  |  420026次下載  |  免費
  7. 4OrCAD10.5下載OrCAD10.5中文版軟件
  8. 0.00 MB  |  234313次下載  |  免費
  9. 5Altium DXP2002下載入口
  10. 未知  |  233045次下載  |  免費
  11. 6電路仿真軟件multisim 10.0免費下載
  12. 340992  |  191183次下載  |  免費
  13. 7十天學(xué)會AVR單片機(jī)與C語言視頻教程 下載
  14. 158M  |  183277次下載  |  免費
  15. 8proe5.0野火版下載(中文版免費下載)
  16. 未知  |  138039次下載  |  免費