資料介紹
異步SRAM產(chǎn)品分為快速與低功耗兩個(gè)極為不同的產(chǎn)品類型,每個(gè)系列都具有其自己的一系列特性、應(yīng)用和價(jià)格??焖佼惒絊RAM具有更快的存取速度,但功耗較高;低功耗SRAM功耗低,但存取速度慢。
從技術(shù)角度看,需要進(jìn)行這樣的利弊權(quán)衡:在低功耗SRAM中,使用特殊柵極誘導(dǎo)漏極泄漏(GIDL)控制技術(shù)來控制待機(jī)電流,以控制待機(jī)功耗。這些技術(shù)涉及在上拉路徑或下拉路徑中增加額外的晶體管,這樣存取延遲就會加劇,從而會增加存取時(shí)間。在高速SRAM中,存取時(shí)間具有最高優(yōu)先級,因此無法使用這種技術(shù)。此外,該晶體管也可增大尺寸,以增加電荷流。尺寸的增大可減少傳播延遲,但同時(shí)會增加功耗。
從應(yīng)用需求角度看,該權(quán)衡奠定了兩種不同的應(yīng)用基礎(chǔ)??焖賁RAM在作為高速處理器的直接接口高速緩存或高速暫存擴(kuò)展存儲器時(shí)工作良好。低功耗異步SRAM可用于為功耗必須非常低的系統(tǒng)臨時(shí)存儲數(shù)據(jù)。因此,快速SRAM通常用于服務(wù)器和航空設(shè)備等高性能系統(tǒng),而低功耗SRAM則主要用于POS終端以及PLC等電池供電設(shè)備。
然而,隨著技術(shù)的不斷發(fā)展,越來越多的有線設(shè)備也推出了電池供電移動版本。過去幾年,我們還見證了無線應(yīng)用的大量推出,其帶來了無線設(shè)備的長足發(fā)展。物聯(lián)網(wǎng)(IoT)促進(jìn)了新一代醫(yī)療設(shè)備、手持設(shè)備、消費(fèi)類電子產(chǎn)品、通信系統(tǒng)以及工業(yè)控制器的發(fā)展,它們正在徹底改變各種設(shè)備的工作與通信方式。在這些移動設(shè)備中,快速SRAM和低功耗SRAM都不能全面滿足需求??焖賁RAM流耗大,很快就會耗盡電池,而低功耗SRAM則存取速度不足,不能滿足這些復(fù)雜設(shè)備的需求。
對于現(xiàn)代電子設(shè)備的所有重要組件而言,降低功耗并縮小封裝是目前面臨的兩個(gè)最大的挑戰(zhàn)。對于異步SRAM來說,這種挑戰(zhàn)就是在小型封裝中創(chuàng)建功耗顯著降低的快速SRAM.雖然很多SRAM制造商都已經(jīng)開始提供采用少數(shù)引腳及裸片尺寸封裝的產(chǎn)品,但并沒有滿足市場對高性能低功耗存儲器的需求。
電源管理和待機(jī)功耗
定義設(shè)備功耗有兩個(gè)主要參數(shù),分別是工作功耗和待機(jī)功耗。工作功耗是指設(shè)備在主動執(zhí)行其主要功能時(shí)消耗的電源。對于SRAM來說,就是在執(zhí)行讀寫功能時(shí)消耗的電源。待機(jī)功耗是指設(shè)備沒有工作,但依然處于通電狀態(tài)時(shí)所消耗的電源。對于絕大多數(shù)手持設(shè)備而言,SRAM大約有20%的時(shí)間在工作,而在其余80%的時(shí)間里,SRAM以待機(jī)模式與電源相連。
在以前大部分電子設(shè)備都連接至電源插座的時(shí)代,待機(jī)功耗在成本和便捷性方面都不是什么問題。然而對于當(dāng)前電池供電設(shè)備而言,待機(jī)功耗可增加明顯的電源優(yōu)勢。如果電源是不可充電的電池,那電池消耗殆盡的速度會更快。在可充電電池應(yīng)用中,最大的問題是:如果需要過于頻繁地充電就很不方便,這正好違背了移動設(shè)備的初衷。
降低功耗的需求最早來自微控制器,因此制造商不得不尋找各種替代方案代替?zhèn)鹘y(tǒng)工作及待機(jī)這兩種狀態(tài)模式。這使TI和NXP等公司推出了具有特殊低功耗工作模式(稱為深度斷電模式或深度睡眠模式)的MCU.這些控制器可在正常工作中全速運(yùn)行,而在不需要時(shí)則進(jìn)入低功耗模式。這樣,系統(tǒng)可在不影響高性能的情況下降低功耗。在該低功耗模式下,外設(shè)和存儲設(shè)備也有望省電。電源管理的重點(diǎn)現(xiàn)已轉(zhuǎn)移至與這些系統(tǒng)相連的存儲設(shè)備。
支持片上電源管理的SRAM
在我們介紹片上電源管理SRAM的概念及無限潛力之前,我們先來了解為什么現(xiàn)在需要它。在電路板上,異步SRAM通常與MCU相連作為擴(kuò)展存儲器,其可用做高速緩存或高速暫存存儲器。與DRAM和閃存等其它存儲性存儲器相比,SRAM具有密度局限性:當(dāng)前可用的SRAM最大存儲密度是8MB,而DRAM則已進(jìn)入GB時(shí)代。然而,MCU很難跟DRAM或閃存直接連接,因?yàn)檫@些存儲器一般具有很長的寫入周期,不能與MCU同步。高速工作的MCU需要可以存儲重要數(shù)據(jù)的高速緩存,以及以一種能夠進(jìn)行快速存取的方式進(jìn)行的各種臨時(shí)運(yùn)算。SRAM最適合用作MCU與存儲性存儲器之間的高速緩存。
下圖不僅更好地說明了存儲器的不同階段,而且還指出了哪里需要SRAM:
?。▓D片來源:https://ece.uwaterloo.ca/~cdr/pubs/Andrei_PhD_thesis.pdf)
?
以下因素進(jìn)一步推動了對低功耗快速SRAM的需求:
1.在具有各種新工藝節(jié)點(diǎn)的現(xiàn)代MCU中,嵌入式高速緩存的作用越來越有限;
2.由于上述原因以及MCU現(xiàn)已變得越來越高級,因此外部高速緩存正日益變得更加重要。因而,當(dāng)務(wù)之急是讓SRAM不再成為限制因素;
3.在電池供電應(yīng)用中,功耗是客戶購買時(shí)考慮的重要參數(shù)。因此,SRAM芯片的高待機(jī)功耗是無法接受的。
由于以上所有因素,SRAM制造商多年來一直在嘗試取消快速產(chǎn)品與低功耗產(chǎn)品之間的利弊權(quán)衡。其中一個(gè)解決方案是混合器件——在存取時(shí)間和功耗上進(jìn)行快速與低功耗的搭配。然而,這些混合SRAM無法滿足快速SRAM可滿足的性能要求。最好的解決方案是支持片上電源管理的快速SRAM,其既可確保高性能,又可實(shí)現(xiàn)低功耗。
支持片上電源管理的SRAM的工作方式跟支持片上電源管理的MCU類似。除了工作模式和待機(jī)工作模式以外,還有深度睡眠工作模式。這種設(shè)置允許SRAM芯片在標(biāo)準(zhǔn)工作模式下全速存取數(shù)據(jù),而在深度睡眠模式下不執(zhí)行任何功能,因此流耗極低(比普通快速SRAM的待機(jī)功耗低1000倍)。
下表針對快速SRAM、低功耗SRAM以及支持深度睡眠工作模式的快速SRAM進(jìn)行了各種參數(shù)比較:
這些數(shù)字清楚地展示了與使用標(biāo)準(zhǔn)快速SRAM相比,使用“帶深度睡眠模式”的SRAM的優(yōu)勢。在SRAM大部分時(shí)間都處于待機(jī)狀態(tài)的應(yīng)用中,該優(yōu)勢會更加明顯。
我們來假設(shè)一個(gè)場景:某器件工作了一千個(gè)小時(shí),SRAM的工作時(shí)間只占其中的20%.如果該SRAM是一款工作電壓為3.3V的快速SRAM,那它的工作功耗就將為120瓦時(shí)(WH),待機(jī)功耗為80 WH.總功耗將為200 WH.現(xiàn)在,如果我們使用具有深度睡眠模式的快速SRAM,工作功耗依然是120 WH,但待機(jī)功耗則銳減至0.06 WH.總功耗大約為121 WH.因此在該具體應(yīng)用中,深度睡眠選項(xiàng)可將功耗降低40%.然而在使用深度睡眠模式時(shí)(無論是MCU還是SRAM),需要考慮的一個(gè)因數(shù)是進(jìn)入和退出深度睡眠模式所需的時(shí)間。如果這兩個(gè)工作周期的時(shí)間間隔比SRAM進(jìn)入和退出深度睡眠模式所用的時(shí)間還短,那該方法就不適合。
迄今為止,唯一推出支持片上電源管理的SRAM的公司是賽普拉斯半導(dǎo)體公司,該產(chǎn)品為PowerSnoozeTM.PowerSnooze SRAM采用54-TSOP和48-BGA等標(biāo)準(zhǔn)封裝,與普通快速SRAM一樣。為使用深度睡眠功能,該產(chǎn)品還提供了一個(gè)特殊引腳(DS),可將低電平有效切換至進(jìn)入深度睡眠模式。標(biāo)準(zhǔn)快速SRAM上的同等引腳恰恰是無連接(NC)。因此只需極少的設(shè)計(jì)工作(只需連接一個(gè)額外的引腳),便可將標(biāo)準(zhǔn)快速SRAM升級為PowerSnooze SRAM.
?
?
從技術(shù)角度看,需要進(jìn)行這樣的利弊權(quán)衡:在低功耗SRAM中,使用特殊柵極誘導(dǎo)漏極泄漏(GIDL)控制技術(shù)來控制待機(jī)電流,以控制待機(jī)功耗。這些技術(shù)涉及在上拉路徑或下拉路徑中增加額外的晶體管,這樣存取延遲就會加劇,從而會增加存取時(shí)間。在高速SRAM中,存取時(shí)間具有最高優(yōu)先級,因此無法使用這種技術(shù)。此外,該晶體管也可增大尺寸,以增加電荷流。尺寸的增大可減少傳播延遲,但同時(shí)會增加功耗。
從應(yīng)用需求角度看,該權(quán)衡奠定了兩種不同的應(yīng)用基礎(chǔ)??焖賁RAM在作為高速處理器的直接接口高速緩存或高速暫存擴(kuò)展存儲器時(shí)工作良好。低功耗異步SRAM可用于為功耗必須非常低的系統(tǒng)臨時(shí)存儲數(shù)據(jù)。因此,快速SRAM通常用于服務(wù)器和航空設(shè)備等高性能系統(tǒng),而低功耗SRAM則主要用于POS終端以及PLC等電池供電設(shè)備。
然而,隨著技術(shù)的不斷發(fā)展,越來越多的有線設(shè)備也推出了電池供電移動版本。過去幾年,我們還見證了無線應(yīng)用的大量推出,其帶來了無線設(shè)備的長足發(fā)展。物聯(lián)網(wǎng)(IoT)促進(jìn)了新一代醫(yī)療設(shè)備、手持設(shè)備、消費(fèi)類電子產(chǎn)品、通信系統(tǒng)以及工業(yè)控制器的發(fā)展,它們正在徹底改變各種設(shè)備的工作與通信方式。在這些移動設(shè)備中,快速SRAM和低功耗SRAM都不能全面滿足需求??焖賁RAM流耗大,很快就會耗盡電池,而低功耗SRAM則存取速度不足,不能滿足這些復(fù)雜設(shè)備的需求。
對于現(xiàn)代電子設(shè)備的所有重要組件而言,降低功耗并縮小封裝是目前面臨的兩個(gè)最大的挑戰(zhàn)。對于異步SRAM來說,這種挑戰(zhàn)就是在小型封裝中創(chuàng)建功耗顯著降低的快速SRAM.雖然很多SRAM制造商都已經(jīng)開始提供采用少數(shù)引腳及裸片尺寸封裝的產(chǎn)品,但并沒有滿足市場對高性能低功耗存儲器的需求。
電源管理和待機(jī)功耗
定義設(shè)備功耗有兩個(gè)主要參數(shù),分別是工作功耗和待機(jī)功耗。工作功耗是指設(shè)備在主動執(zhí)行其主要功能時(shí)消耗的電源。對于SRAM來說,就是在執(zhí)行讀寫功能時(shí)消耗的電源。待機(jī)功耗是指設(shè)備沒有工作,但依然處于通電狀態(tài)時(shí)所消耗的電源。對于絕大多數(shù)手持設(shè)備而言,SRAM大約有20%的時(shí)間在工作,而在其余80%的時(shí)間里,SRAM以待機(jī)模式與電源相連。
在以前大部分電子設(shè)備都連接至電源插座的時(shí)代,待機(jī)功耗在成本和便捷性方面都不是什么問題。然而對于當(dāng)前電池供電設(shè)備而言,待機(jī)功耗可增加明顯的電源優(yōu)勢。如果電源是不可充電的電池,那電池消耗殆盡的速度會更快。在可充電電池應(yīng)用中,最大的問題是:如果需要過于頻繁地充電就很不方便,這正好違背了移動設(shè)備的初衷。
降低功耗的需求最早來自微控制器,因此制造商不得不尋找各種替代方案代替?zhèn)鹘y(tǒng)工作及待機(jī)這兩種狀態(tài)模式。這使TI和NXP等公司推出了具有特殊低功耗工作模式(稱為深度斷電模式或深度睡眠模式)的MCU.這些控制器可在正常工作中全速運(yùn)行,而在不需要時(shí)則進(jìn)入低功耗模式。這樣,系統(tǒng)可在不影響高性能的情況下降低功耗。在該低功耗模式下,外設(shè)和存儲設(shè)備也有望省電。電源管理的重點(diǎn)現(xiàn)已轉(zhuǎn)移至與這些系統(tǒng)相連的存儲設(shè)備。
支持片上電源管理的SRAM
在我們介紹片上電源管理SRAM的概念及無限潛力之前,我們先來了解為什么現(xiàn)在需要它。在電路板上,異步SRAM通常與MCU相連作為擴(kuò)展存儲器,其可用做高速緩存或高速暫存存儲器。與DRAM和閃存等其它存儲性存儲器相比,SRAM具有密度局限性:當(dāng)前可用的SRAM最大存儲密度是8MB,而DRAM則已進(jìn)入GB時(shí)代。然而,MCU很難跟DRAM或閃存直接連接,因?yàn)檫@些存儲器一般具有很長的寫入周期,不能與MCU同步。高速工作的MCU需要可以存儲重要數(shù)據(jù)的高速緩存,以及以一種能夠進(jìn)行快速存取的方式進(jìn)行的各種臨時(shí)運(yùn)算。SRAM最適合用作MCU與存儲性存儲器之間的高速緩存。
下圖不僅更好地說明了存儲器的不同階段,而且還指出了哪里需要SRAM:
?。▓D片來源:https://ece.uwaterloo.ca/~cdr/pubs/Andrei_PhD_thesis.pdf)
?
以下因素進(jìn)一步推動了對低功耗快速SRAM的需求:
1.在具有各種新工藝節(jié)點(diǎn)的現(xiàn)代MCU中,嵌入式高速緩存的作用越來越有限;
2.由于上述原因以及MCU現(xiàn)已變得越來越高級,因此外部高速緩存正日益變得更加重要。因而,當(dāng)務(wù)之急是讓SRAM不再成為限制因素;
3.在電池供電應(yīng)用中,功耗是客戶購買時(shí)考慮的重要參數(shù)。因此,SRAM芯片的高待機(jī)功耗是無法接受的。
由于以上所有因素,SRAM制造商多年來一直在嘗試取消快速產(chǎn)品與低功耗產(chǎn)品之間的利弊權(quán)衡。其中一個(gè)解決方案是混合器件——在存取時(shí)間和功耗上進(jìn)行快速與低功耗的搭配。然而,這些混合SRAM無法滿足快速SRAM可滿足的性能要求。最好的解決方案是支持片上電源管理的快速SRAM,其既可確保高性能,又可實(shí)現(xiàn)低功耗。
支持片上電源管理的SRAM的工作方式跟支持片上電源管理的MCU類似。除了工作模式和待機(jī)工作模式以外,還有深度睡眠工作模式。這種設(shè)置允許SRAM芯片在標(biāo)準(zhǔn)工作模式下全速存取數(shù)據(jù),而在深度睡眠模式下不執(zhí)行任何功能,因此流耗極低(比普通快速SRAM的待機(jī)功耗低1000倍)。
下表針對快速SRAM、低功耗SRAM以及支持深度睡眠工作模式的快速SRAM進(jìn)行了各種參數(shù)比較:
這些數(shù)字清楚地展示了與使用標(biāo)準(zhǔn)快速SRAM相比,使用“帶深度睡眠模式”的SRAM的優(yōu)勢。在SRAM大部分時(shí)間都處于待機(jī)狀態(tài)的應(yīng)用中,該優(yōu)勢會更加明顯。
我們來假設(shè)一個(gè)場景:某器件工作了一千個(gè)小時(shí),SRAM的工作時(shí)間只占其中的20%.如果該SRAM是一款工作電壓為3.3V的快速SRAM,那它的工作功耗就將為120瓦時(shí)(WH),待機(jī)功耗為80 WH.總功耗將為200 WH.現(xiàn)在,如果我們使用具有深度睡眠模式的快速SRAM,工作功耗依然是120 WH,但待機(jī)功耗則銳減至0.06 WH.總功耗大約為121 WH.因此在該具體應(yīng)用中,深度睡眠選項(xiàng)可將功耗降低40%.然而在使用深度睡眠模式時(shí)(無論是MCU還是SRAM),需要考慮的一個(gè)因數(shù)是進(jìn)入和退出深度睡眠模式所需的時(shí)間。如果這兩個(gè)工作周期的時(shí)間間隔比SRAM進(jìn)入和退出深度睡眠模式所用的時(shí)間還短,那該方法就不適合。
迄今為止,唯一推出支持片上電源管理的SRAM的公司是賽普拉斯半導(dǎo)體公司,該產(chǎn)品為PowerSnoozeTM.PowerSnooze SRAM采用54-TSOP和48-BGA等標(biāo)準(zhǔn)封裝,與普通快速SRAM一樣。為使用深度睡眠功能,該產(chǎn)品還提供了一個(gè)特殊引腳(DS),可將低電平有效切換至進(jìn)入深度睡眠模式。標(biāo)準(zhǔn)快速SRAM上的同等引腳恰恰是無連接(NC)。因此只需極少的設(shè)計(jì)工作(只需連接一個(gè)額外的引腳),便可將標(biāo)準(zhǔn)快速SRAM升級為PowerSnooze SRAM.
?
?
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 如何實(shí)現(xiàn)SDRAM存儲器并通過接口連接到高性能微控制器
- TPS53515低功耗DDR存儲器電源參考設(shè)計(jì)
- 高性能異步SRAM技術(shù)角度
- SRAM隨機(jī)存儲器的特點(diǎn)及結(jié)構(gòu)
- 高性能低功耗開關(guān)電源控制芯片SP5623數(shù)據(jù)手冊 20次下載
- 最高性能、最低功耗的雙混頻器
- 如何使用Virtex4和FPGA實(shí)現(xiàn)低功耗圖像融合系統(tǒng) 121次下載
- SRAM存儲器接口的Protel DXP電路圖免費(fèi)下載 13次下載
- SRAM存儲器的訪問與控制的實(shí)驗(yàn)資料說明 16次下載
- 根據(jù) Linux 的操作系統(tǒng)探究存儲器特性及性能 9次下載
- 低功耗的高性能四路組相聯(lián)CMOS高速緩沖存儲器 12次下載
- 基于SOC的高性能存儲器控制器設(shè)計(jì) 0次下載
- 在高性能、低功耗浮點(diǎn)處理精度方面實(shí)現(xiàn)飛躍 39次下載
- MaxArias無線存儲器芯片
- 為實(shí)現(xiàn)最高性能選擇正確的SRAM架構(gòu)方案
- 為什么Maxim選擇設(shè)計(jì)單件NV SRAM模塊 477次閱讀
- 從MAXQ8913微控制器上的RAM執(zhí)行應(yīng)用代碼 494次閱讀
- 使用IAR編譯器在MAXQ微控制器上分配閃存和SRAM存儲器 1184次閱讀
- 動態(tài)隨機(jī)存儲器集成工藝(DRAM)詳解 7764次閱讀
- 采用FM20L08鐵電存儲器實(shí)現(xiàn)溫度記錄儀系統(tǒng)的設(shè)計(jì) 2352次閱讀
- 如何使用Freeze技術(shù)實(shí)現(xiàn)低功耗設(shè)計(jì) 1983次閱讀
- SRAM存儲器的并行接口和串行接口對比 4398次閱讀
- PSoC 6高性能超低功耗IoT應(yīng)用方案 4238次閱讀
- 半導(dǎo)體存儲器技術(shù)及發(fā)展趨勢詳解 1.2w次閱讀
- 新型的存儲器技術(shù)有哪些 新型存儲器能解決哪些問題 1.1w次閱讀
- 一種多功能存儲器芯片的測試系統(tǒng)硬件設(shè)計(jì)與實(shí)現(xiàn)詳解 2029次閱讀
- 三種不同方法表征存儲器特性 1552次閱讀
- flash存儲器在線編程 3951次閱讀
- MSP432:低功耗與高性能的完美搭配 5512次閱讀
- MAXQ構(gòu)架上閃存和SRAM存儲器的分配 2425次閱讀
下載排行
本周
- 1TC358743XBG評估板參考手冊
- 1.36 MB | 330次下載 | 免費(fèi)
- 2開關(guān)電源基礎(chǔ)知識
- 5.73 MB | 6次下載 | 免費(fèi)
- 3100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
- 4嵌入式linux-聊天程序設(shè)計(jì)
- 0.60 MB | 3次下載 | 免費(fèi)
- 5基于FPGA的光纖通信系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
- 0.61 MB | 2次下載 | 免費(fèi)
- 6基于FPGA的C8051F單片機(jī)開發(fā)板設(shè)計(jì)
- 0.70 MB | 2次下載 | 免費(fèi)
- 751單片機(jī)窗簾控制器仿真程序
- 1.93 MB | 2次下載 | 免費(fèi)
- 8基于51單片機(jī)的RGB調(diào)色燈程序仿真
- 0.86 MB | 2次下載 | 免費(fèi)
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費(fèi)
- 2555集成電路應(yīng)用800例(新編版)
- 0.00 MB | 33564次下載 | 免費(fèi)
- 3接口電路圖大全
- 未知 | 30323次下載 | 免費(fèi)
- 4開關(guān)電源設(shè)計(jì)實(shí)例指南
- 未知 | 21548次下載 | 免費(fèi)
- 5電氣工程師手冊免費(fèi)下載(新編第二版pdf電子書)
- 0.00 MB | 15349次下載 | 免費(fèi)
- 6數(shù)字電路基礎(chǔ)pdf(下載)
- 未知 | 13750次下載 | 免費(fèi)
- 7電子制作實(shí)例集錦 下載
- 未知 | 8113次下載 | 免費(fèi)
- 8《LED驅(qū)動電路設(shè)計(jì)》 溫德爾著
- 0.00 MB | 6653次下載 | 免費(fèi)
總榜
- 1matlab軟件下載入口
- 未知 | 935054次下載 | 免費(fèi)
- 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
- 78.1 MB | 537796次下載 | 免費(fèi)
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費(fèi)
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費(fèi)
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費(fèi)
- 6電路仿真軟件multisim 10.0免費(fèi)下載
- 340992 | 191185次下載 | 免費(fèi)
- 7十天學(xué)會AVR單片機(jī)與C語言視頻教程 下載
- 158M | 183278次下載 | 免費(fèi)
- 8proe5.0野火版下載(中文版免費(fèi)下載)
- 未知 | 138040次下載 | 免費(fèi)
評論
查看更多