資料介紹
1 Introduction Many problems in early vision involve assigning each pixel a label, where the labels represent some local quantity such as disparity. Such pixel labeling problems are naturally represented in terms of energy minimization, where the energy function has two terms: one term penalizes solutions that are inconsistent with the observed data, while the other term enforces some kind of spatial coherence. One of the reasons this framework is so popular is that it can be justified in terms of maximum a posteriori estimation of a Markov Random Field, as described in [1, 2]。 Despite the elegance and power of the energy minimization approach, its early adoption was slowed by computational considerations. The algorithms that were originally used, such as ICM [1] or simulated annealing [3, 4], proved to be extremely inefficient. In the last few years, energy minimization approaches have had a renaissance, primarily due to powerful new optimization algorithms such as graph cuts [5, 6] and Loopy Belief Propagation (LBP) [7, 8]。 The results, especially in stereo, have been dramatic; according to the widely-used Middlebury stereo benchmarks [9], almost all the top-performing stereo methods rely on graph cuts or LBP. Moreover, these methods give substantially more accurate results than were previously possible. Simultaneously, the range of applications of pixel labeling problems has also expanded dramatically, moving from early applications such as image restoration [1], texture modeling [10], image labeling [11], and stereo matching [4, 5], to applications such as interactive photo segmentation [12–14] and the automatic placement of seams in digital photomontages [15]。 Relatively little attention has been paid, however, to the relative performance of various optimization algorithms. Among the few exceptions is [16], which compared graph cuts and LBP, and [17], which compared several different max flow algorithms for graph cuts. While it is generally accepted that algorithms such as graph cuts are a huge improvement over older techniques such as simulated annealing, less is known about the efficiency vs. accuracy tradeoff amongst more recently developed algorithms. In this paper, we evaluate a number of different energy minimization algorithms for pixel labeling problems. We propose a number of benchmark problems for energy minimization and use these benchmarks to compare several different energy minimization methods. Since much of the work in energy minimization has been motivated by pixel labeling problems over 2D grids, we have restricted our attention to problems with this simple topology. (The extension of our work to more general topologies, such as 3D, is straightforward.) This paper is organized as follows. In section 2 we give a precise description of the energy functions that we consider, and present a simple but general software interface to describe such energy functions and to call an arbitrary energy minimization algorithm. In section 3 we describe the different energy minimization algorithms that we have implemented, and in section 4 we present our set of benchmarks. In section 5 we provide our experimental comparison of the different energy minimization methods. Finally, in section 6 we discuss the conclusions that can be drawn from our study.
- 基于隱馬爾科夫模型的公交乘客出行鏈識(shí)別 4次下載
- 融合灰色模型和馬爾科夫模型的農(nóng)產(chǎn)品產(chǎn)量預(yù)測(cè) 7次下載
- 基于隱馬爾科夫模型的惡意域名檢測(cè)方法 6次下載
- 改進(jìn)隱馬爾科夫模型的網(wǎng)絡(luò)態(tài)勢(shì)評(píng)估方法 5次下載
- 基于馬爾科夫鏈的隨機(jī)測(cè)量矩陣研究分析 7次下載
- 高精度近線性的馬爾可夫隨機(jī)場(chǎng)新模型iMRF 2次下載
- 一種融合馬爾科夫決策過(guò)程與信息熵的對(duì)話算法 6次下載
- 基于隱馬爾科夫模型和卷積神經(jīng)網(wǎng)絡(luò)的圖像標(biāo)注方法 4次下載
- 隨機(jī)過(guò)程的風(fēng)速預(yù)測(cè)模型 8次下載
- 基于馬爾可夫隨機(jī)場(chǎng)模型的運(yùn)動(dòng)對(duì)象分割算法_王閃 0次下載
- 網(wǎng)絡(luò)系統(tǒng)的馬爾科夫時(shí)滯預(yù)測(cè)控制_黃玲 18次下載
- 基于非均勻馬爾可夫隨機(jī)場(chǎng)的圖像分割方法 0次下載
- 基于核密度估計(jì)和馬爾科夫隨機(jī)場(chǎng)的運(yùn)動(dòng)目標(biāo)檢測(cè) 44次下載
- 基于簡(jiǎn)化馬爾可夫隨機(jī)場(chǎng)的紅外圖像快速分割方法 25次下載
- 基于馬爾科夫鏈的網(wǎng)絡(luò)控制系統(tǒng)調(diào)度
- SystemVerilog的隨機(jī)約束方法 1167次閱讀
- FPGA的偽隨機(jī)數(shù)發(fā)生器學(xué)習(xí)介紹 1372次閱讀
- 什么是馬爾可夫建模,它的用途是什么? 1359次閱讀
- 命名實(shí)體識(shí)別實(shí)踐 - CRF 1294次閱讀
- 強(qiáng)化學(xué)習(xí)應(yīng)用中對(duì)話系統(tǒng)的用戶模擬器 1937次閱讀
- 隱馬爾可夫模型描述一個(gè)含有隱含未知參數(shù)的馬爾可夫過(guò)程 4417次閱讀
- 基于模型的學(xué)習(xí)vs無(wú)模型學(xué)習(xí) 6956次閱讀
- 一文看懂AI制藥的作用 1.1w次閱讀
- 基于馬爾科夫的隨機(jī)場(chǎng)的圖像分割是一種基于統(tǒng)計(jì)的圖像分割算法 1.6w次閱讀
- 語(yǔ)音識(shí)別技術(shù)必定會(huì)滲透在人們生活的每個(gè)角落 7933次閱讀
- 隱馬爾科夫模型詳解分析 2022次閱讀
- 如何用隱馬爾可夫模型實(shí)現(xiàn)中文拼音輸入 8014次閱讀
- 哈夫曼算法的理解及原理分析,算法實(shí)現(xiàn),構(gòu)造哈夫曼樹(shù)的算法 3.4w次閱讀
- java實(shí)現(xiàn)的哈夫曼編碼與解碼 5673次閱讀
- 一種普適機(jī)器人系統(tǒng)同時(shí)定位、標(biāo)定與建圖方法 2914次閱讀
下載排行
本周
- 1TC358743XBG評(píng)估板參考手冊(cè)
- 1.36 MB | 330次下載 | 免費(fèi)
- 2開(kāi)關(guān)電源基礎(chǔ)知識(shí)
- 5.73 MB | 11次下載 | 免費(fèi)
- 3嵌入式linux-聊天程序設(shè)計(jì)
- 0.60 MB | 3次下載 | 免費(fèi)
- 4DIY動(dòng)手組裝LED電子顯示屏
- 0.98 MB | 3次下載 | 免費(fèi)
- 5基于FPGA的C8051F單片機(jī)開(kāi)發(fā)板設(shè)計(jì)
- 0.70 MB | 2次下載 | 免費(fèi)
- 651單片機(jī)窗簾控制器仿真程序
- 1.93 MB | 2次下載 | 免費(fèi)
- 751單片機(jī)大棚環(huán)境控制器仿真程序
- 1.10 MB | 2次下載 | 免費(fèi)
- 8基于51單片機(jī)的RGB調(diào)色燈程序仿真
- 0.86 MB | 2次下載 | 免費(fèi)
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費(fèi)
- 2555集成電路應(yīng)用800例(新編版)
- 0.00 MB | 33566次下載 | 免費(fèi)
- 3接口電路圖大全
- 未知 | 30323次下載 | 免費(fèi)
- 4開(kāi)關(guān)電源設(shè)計(jì)實(shí)例指南
- 未知 | 21549次下載 | 免費(fèi)
- 5電氣工程師手冊(cè)免費(fèi)下載(新編第二版pdf電子書(shū))
- 0.00 MB | 15349次下載 | 免費(fèi)
- 6數(shù)字電路基礎(chǔ)pdf(下載)
- 未知 | 13750次下載 | 免費(fèi)
- 7電子制作實(shí)例集錦 下載
- 未知 | 8113次下載 | 免費(fèi)
- 8《LED驅(qū)動(dòng)電路設(shè)計(jì)》 溫德?tīng)栔?/a>
- 0.00 MB | 6656次下載 | 免費(fèi)
總榜
- 1matlab軟件下載入口
- 未知 | 935054次下載 | 免費(fèi)
- 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
- 78.1 MB | 537798次下載 | 免費(fèi)
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420027次下載 | 免費(fèi)
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費(fèi)
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費(fèi)
- 6電路仿真軟件multisim 10.0免費(fèi)下載
- 340992 | 191186次下載 | 免費(fèi)
- 7十天學(xué)會(huì)AVR單片機(jī)與C語(yǔ)言視頻教程 下載
- 158M | 183279次下載 | 免費(fèi)
- 8proe5.0野火版下載(中文版免費(fèi)下載)
- 未知 | 138040次下載 | 免費(fèi)
評(píng)論
查看更多