電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示
創(chuàng)作
電子發(fā)燒友網(wǎng)>電子資料下載>類型>參考設(shè)計(jì)>ADAU第1373聲音編解碼器Linux驅(qū)動(dòng)程序

ADAU第1373聲音編解碼器Linux驅(qū)動(dòng)程序

2021-04-21 | pdf | 81.31KB | 次下載 | 2積分

資料介紹

This version (23 Feb 2017 12:47) was approved by Lars-Peter Clausen.The Previously approved version (08 Jun 2016 20:12) is available.Diff

ADAU1373 Sound CODEC Linux Driver

Supported Devices

Evaluation Boards

Source Code

Status

Source Mainlined?
git Yes

Files

Example device initialization

For compile time configuration, it’s common Linux practice to keep board- and application-specific configuration out of the main driver file, instead putting it into the board support file.

For devices on custom boards, as typical of embedded and SoC-(system-on-chip) based hardware, Linux uses platform_data to point to board-specific structures describing devices and how they are connected to the SoC. This can include available ports, chip variants, preferred modes, default initialization, additional pin roles, and so on. This shrinks the board-support packages (BSPs) and minimizes board and application specific #ifdefs in drivers.

21 Oct 2010 16:10

I2C

Declaring I2C devices

Unlike PCI or USB devices, I2C devices are not enumerated at the hardware level. Instead, the software must know which devices are connected on each I2C bus segment, and what address these devices are using. For this reason, the kernel code must instantiate I2C devices explicitly. There are different ways to achieve this, depending on the context and requirements. However the most common method is to declare the I2C devices by bus number.

This method is appropriate when the I2C bus is a system bus, as in many embedded systems, wherein each I2C bus has a number which is known in advance. It is thus possible to pre-declare the I2C devices that inhabit this bus. This is done with an array of struct i2c_board_info, which is registered by calling i2c_register_board_info().

So, to enable such a driver one need only edit the board support file by adding an appropriate entry to i2c_board_info.

For more information see: Documentation/i2c/instantiating-devices

21 Oct 2010 16:10
static struct i2c_board_info __initdata bfin_i2c_board_info[] = {
?
	[--snip--]
	{
		I2C_BOARD_INFO("adau1373", 0x1a),
	},
	[--snip--]
}
static int __init stamp_init(void)
{
	[--snip--]
	i2c_register_board_info(0, bfin_i2c_board_info,
				ARRAY_SIZE(bfin_i2c_board_info));
	[--snip--]
?
	return 0;
}
arch_initcall(board_init);

ASoC DAPM Widgets

Name Description
AIN1L Left Channel Input 1
AIN1R Right Channel Input 1
AIN2L Left Channel Input 2
AIN2R Right Channel Input 2
AIN3L Left Channel Input 3
AIN3R Right Channel Input 3
AIN4L Left Channel Input 4
AIN4R Right Channel Input 4
DMIC1DAT Serial Data Input Digital Microphone 1 and 2
DMIC2DAT Serial Data Input Digital Microphone 3 and 4
LOUT1L Left Channel Line Output 1
LOUT1R Right Channel Line Output 1
LOUT2L Left Channel Line Output 2
LOUT2R Right Channel Line Output 2
HPL Left Headphone Output
HPR Right Headphone Output
SPKL Left Speaker Output
SPKR Right Speaker Output
EP Eearpiece Output
MICBIAS1 Micbias 1 supply
MICBIAS2 Micbias 2 supply

ALSA Controls

Name Description Configuration
AIF1 Capture Volume Digital Audio Interface A Recording Volume
AIF2 Capture Volume Digital Audio Interface B Recording Volume
AIF3 Capture Volume Digital Audio Interface C Recording Volume
ADC Capture Volume ADC Recording Volume
DMIC Capture Volume DMIC Recording Volume
Input 1 Capture Volume Input 1 Gain
Input 2 Capture Volume Input 2 Gain
Input 3 Capture Volume Input 3 Gain
Input 4 Capture Volume Input 4 Gain
Input 1 Boost Capture Volume Input 1 ADC Boost (+20dB)
Input 2 Boost Capture Volume Input 2 ADC Boost (+20dB)
Input 3 Boost Capture Volume Input 3 ADC Boost (+20dB)
Input 4 Boost Capture Volume Input 4 ADC Boost (+20dB)
AIF1 Playback Volume Digital Audio Interface A Playback Datapath Volume
AIF2 Playback Volume Digital Audio Interface B Playback Datapath Volume
AIF3 Playback Volume Digital Audio Interface C Playback Datapath Volume
DAC1 Playback Volume DAC1 Playback Volume
DAC2 Playback Volume DAC2 Playback Volume
Lineout1 Playback Volume Lineout 1 Volume
Lineout2 Playback Volume Lineout 2 Volume Single-ended lineout
Speaker Playback Volume Speaker Out Volume
Headphone Playback Volume Heaphone Out Volume
Earpiece Playback Volume Earpiece Amplifier Gain
AIF1 Boost Playback Volume Digital Audio Interface A Playback Gain (+6dB)
AIF2 Boost Playback Volume Digital Audio Interface B Playback Gain (+6dB)
AIF3 Boost Playback Volume Digital Audio Interface C Playback Gain (+6dB)
AIF1 Boost Capture Volume Digital Audio Interface C Recording Gain (+6dB)
AIF2 Boost Capture Volume Digital Audio Interface C Recording Gain (+6dB)
AIF3 Boost Capture Volume Digital Audio Interface C Recording Gain (+6dB)
ADC Boost Capture Volume ADC Recording Gain (+6dB)
DMIC Boost Capture Volume DMIC Recording Gain (+6dB)
DAC1 Boost Playback Volume DAC1 Playback Gain (+6dB)
DAC2 Boost Playback Volume DAC1 Playback Gain (+6dB)
Speaker Boost Playback Volume Speaker Output Gain
Lineout1 LR Mux Lineout1 Left-Right Mux (Mono Stereo Control)
Valid values: “Mute”, “Right Channel (L+R)”, “Left Channel (L+R)”, “Stereo”
Lineout2 LR Mux Lineout2 Left-Right Mux (Mono Stereo Control)
Valid values: “Mute”, “Right Channel (L+R)”, “Left Channel (L+R)”, “Stereo”
Single-ended lineout
Speaker LR Mux Speaker Left-Right Mux (Mono Stereo Control)
Valid values: “Mute”, “Right Channel (L+R)”, “Left Channel (L+R)”, “Stereo”
HPF Cutoff High-pass-filter cutoff frequency.
Valid values: “3.7Hz”, “50Hz”, “100Hz”, … steps of 50Hz …, “800Hz”
HPF Switch Enable/Disable High-pass-filter
HPF Channel Hight-pass-filter channel.
Valid values: “Channel1”, “Channel2”, “Channel3”, “Channel4”, “Channel5”
Bass HPF Cutoff Bass High-pass-filter cutoff frequency.
Valid values: “158Hz”, “232Hz”, “347Hz”, “520Hz”
Bass Clip Level Threshold Signal Extend Density (Clip Level). Overdrive level for bass enhancement.
Valid values: “0.125”, “0.250”, “0.370”, “0.500”, “0.625”, “0.750”, “0.875”
Bass LPF Cutoff Bass Low-pass-filter cutoff frequency.
Valid values: “801Hz”, “1001Hz”
Bass Playback Switch Enable/Disable Bass Enhancement
Bass Playback Volume Bass Enhancement Gain
Bass Channel Bass Enhancement Channel.
Valid values: “Channel1”, “Channel2”, “Channel3”, “Channel4”, “Channel5”
3D Freq 3D Enhancement cutoff frequency (relative to the sampling rate).
Valid values: “No 3D”, “0.03125 fs”, “0.04583 fs”, “0.075 fs”, “0.11458 fs”, “0.16875 fs”, “0.27083 fs”
3D Level 3D Enhancement effect level.
Valid values: “0%”, “6.67%”, “13.33%”, “20%”, “26.67%”, “33.33%”, “40%”, “46.67%”, “53.33%”,
“60%”, “66.67%”, “73.33%”, “80%”, “86.67”, “93.33%”, “100%”
3D Playback Switch Enable/Disable 3D Enhancement
3D Playback Volume 3D Enhancement Gain
3D Channel 3D Enhancement Channel.
Valid values: “Channel1”, “Channel2”, “Channel3”, “Channel4”, “Channel5”
Zero Cross Switch Enable/Disable Zero-Cross-Detection for volume updates
DRC1 Channel Dynamic Range Control 1 Channel.
Valid values: “Channel1”, “Channel2”, “Channel3”, “Channel4”, “Channel5”
DRC2 Channel Dynamic Range Control 2 Channel.
Valid values: “Channel1”, “Channel2”, “Channel3”, “Channel4”, “Channel5”
DRC3 Channel Dynamic Range Control 3 Channel.
Valid values: “Channel1”, “Channel2”, “Channel3”, “Channel4”, “Channel5”

PLL Configuration

The ADAU1373 features two PLLs:

enum adau1373_pll {
    ADAU1373_PLL1 = 0,
    ADAU1373_PLL2 = 1,
};

Each PLLs input frequency can be selected from a variety of signals:

enum adau1373_pll_src {
    ADAU1373_PLL_SRC_MCLK1 = 0,
    ADAU1373_PLL_SRC_BCLK1 = 1,
    ADAU1373_PLL_SRC_BCLK2 = 2,
    ADAU1373_PLL_SRC_BCLK3 = 3,
    ADAU1373_PLL_SRC_LRCLK1 = 4,
    ADAU1373_PLL_SRC_LRCLK2 = 5,
    ADAU1373_PLL_SRC_LRCLK3 = 6,
    ADAU1373_PLL_SRC_GPIO1 = 7,
    ADAU1373_PLL_SRC_GPIO2 = 8,
    ADAU1373_PLL_SRC_GPIO3 = 9,
    ADAU1373_PLL_SRC_GPIO4 = 10,
    ADAU1373_PLL_SRC_MCLK2 = 11,
};

The input frequency must configured to be between 7813 and 27000000 Hz. The output frequency must be configured to be between 45158000 and 49152000. Configuring the PLL with other input or output frequency will fail.

The PLL runs at 1024 times the base sample rate. So for a 48000 Hz based sample rate you'd normally choose 49152000 Hz for the PLL output frequncey and for a 44100 Hz based sample rate 45158400 Hz.

DAI configuration

The codec driver registers three DAIs:

  • “adau1373-aif1” (Digital Audio Interface A)
  • “adau1373-aif2” (Digital Audio Interface B)
  • “adau1373-aif3” (Digital Audio Interface C)

Supported DAI formats

Name Supported by driver Description
SND_SOC_DAIFMT_I2S yes I2S mode
SND_SOC_DAIFMT_RIGHT_J yes Right Justified mode
SND_SOC_DAIFMT_LEFT_J yes Left Justified mode
SND_SOC_DAIFMT_DSP_A no data MSB after FRM LRC
SND_SOC_DAIFMT_DSP_B yes data MSB during FRM LRC
SND_SOC_DAIFMT_AC97 no AC97 mode
SND_SOC_DAIFMT_PDM no Pulse density modulation
SND_SOC_DAIFMT_NB_NF yes Normal bit- and frameclock
SND_SOC_DAIFMT_NB_IF yes Normal bitclock, inverted frameclock
SND_SOC_DAIFMT_IB_NF yes Inverted frameclock, normal bitclock
SND_SOC_DAIFMT_IB_IF yes Inverted bit- and frameclock
SND_SOC_DAIFMT_CBM_CFM yes Codec bit- and frameclock master
SND_SOC_DAIFMT_CBS_CFM no Codec bitclock slave, frameclock master
SND_SOC_DAIFMT_CBM_CFS no Codec bitclock master, frameclock slave
SND_SOC_DAIFMT_CBS_CFS yes Codec bit- and frameclock slave

DAI sysclk

The DAIs can either use PLL1 or PLL2 as source. When configuring a DAI its rate should be set to the rate of the source PLL.

enum adau1373_clk_src {
    ADAU1373_CLK_SRC_PLL1 = 0,
    ADAU1373_CLK_SRC_PLL2 = 1,
};

Example DAI configuration

static int bfin_eval_adau1373_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *params)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
	struct snd_soc_dai *codec_dai = rtd->codec_dai;
	int ret;
	int pll_rate;
?
	ret = snd_soc_dai_set_fmt(cpu_dai, SND_SOC_DAIFMT_I2S |
			SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBM_CFM);
	if (ret)
		return ret;
?
	ret = snd_soc_dai_set_fmt(codec_dai, SND_SOC_DAIFMT_I2S |
			SND_SOC_DAIFMT_NB_NF | SND_SOC_DAIFMT_CBM_CFM);
	if (ret)
		return ret;
?
	switch (params_rate(params)) {
	case 48000:
	case 8000:
	case 12000:
	case 16000:
	case 24000:
	case 32000:
		pll_rate = 48000 * 1024;
		break;
	case 44100:
	case 7350:
	case 11025:
	case 14700:
	case 22050:
	case 29400:
		pll_rate = 44100 * 1024;
		break;
	default:
		return -EINVAL;
	}
?
	ret = snd_soc_dai_set_pll(codec_dai, ADAU1373_PLL1,
			ADAU1373_PLL_SRC_MCLK1, 12288000, pll_rate);
	if (ret)
		return ret;
?
	ret = snd_soc_dai_set_sysclk(codec_dai, ADAU1373_CLK_SRC_PLL1, pll_rate,
			SND_SOC_CLOCK_IN);
?
	return ret;
}
?
static int bfin_eval_adau1373_codec_init(struct snd_soc_pcm_runtime *rtd)
{
	struct snd_soc_dai *codec_dai = rtd->codec_dai;
	unsigned int pll_rate = 48000 * 1024;
	int ret;
?
	ret = snd_soc_dai_set_pll(codec_dai, ADAU1373_PLL1,
			ADAU1373_PLL_SRC_MCLK1, 12288000, pll_rate);
	if (ret)
		return ret;
?
	ret = snd_soc_dai_set_sysclk(codec_dai, ADAU1373_CLK_SRC_PLL1, pll_rate,
			SND_SOC_CLOCK_IN);
?
	return ret;
}
static struct snd_soc_ops bfin_eval_adau1373_ops = {
	.hw_params = bfin_eval_adau1373_hw_params,
};
?
static struct snd_soc_dai_link bfin_eval_adau1373_dai = {
	.name = "adau1373",
	.stream_name = "adau1373",
	.cpu_dai_name = "bfin-i2s.0",
	.codec_dai_name = "adau1373-aif1",
	.platform_name = "bfin-i2s-pcm-audio",
	.codec_name = "adau1373.0-001a",
	.ops = &bfin_eval_adau1373_ops,
	.init = bfin_eval_adau1373_codec_init,
};

ADAU1373 evaluation board driver

There is no dedicated Blackfin STAMP evaluation board for the ADAU1373. During test and driver development we used the EVAL-ADAU1373 board.

It can be easily wired to the Blackfin STAMP SPORT header.

Source

Status

Source Mainlined?
git yes

Files

Kernel configuration

Device Drivers  --->
[*] I2C support  --->
[*]   I2C Hardware Bus support  --->
***     I2C system bus drivers (mostly embedded / system-on-chip) ***
<*>       Blackfin TWI I2C support
(100)     Blackfin TWI I2C clock (kHz)

Enable ALSA SoC evaluation board driver:

Device Drivers  --->
 Sound card support  --->
   Advanced Linux Sound Architecture  --->
     ALSA for SoC audio support  --->
       Support for the EVAL-ADAU1373 boards on Blackfin eval boards

Hardware configuration

Connect the STAMP SPORT 0 port (P6) to the EVAL-ADAU1373 J23 and J28 headers.

Note that the SPORT has separate signals for the capture and playback clocks, while the ADAU1373 uses the same clock signals for both, so the EVAL-ADU1373 clock signal pins need to be connected to two STAMP pins each.

STAMP pin EVAL-ADAU1373 pin Function
P6-26 (SPORT 0 - PJ2_SCL) J23-1 I2C SCL
P6-24 (SPORT 0 - PJ3_SDA) J23-3 I2C SDA
P6-6 (SPORT 0 - PJ9_TSCLK0), P6-16 (SPORT 0 - PJ6_RSCLK0) J28-6 (A_BCLK) BCLK
P6-11 (SPORT 0 - PJ10_TFS0), P6-7 (SPORT 0 - PJ7_RFS0) J28-8 (A_LRC) LRCLK
P6-14 (SPORT 0 - PJ11_DT0PRI J28-10 (A_DACDAT) Playback data
P6-8 (SPORT 0 - PJ8_DR0PRI) J28-12 (A_ADCDAT) Captrue data
P6-33 J28-1 GND

Driver testing

Load the driver and make sure the sound card is properly instantiated.

This specifies any shell prompt running on the target

root:/> modprobe snd-bf5xx-i2s
root:/> modprobe snd-soc-bf5xx-i2s
root:/> modprobe snd-soc-adau1373
root:/> modprobe snd-soc-bfin-eval-adau1373
dma rx:3 tx:4, err irq:45, regs:ffc00800
asoc: ADAU1373 <-> bf5xx-i2s mapping ok

This specifies any shell prompt running on the target

root:/> modprobe snd-pcm-oss
root:/> tone
TONE: generating sine wave at 1000 Hz...

root:/> arecord -f cd | aplay
Recording WAVE 'stdin' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo
Playing WAVE 'stdin' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo
下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1電子電路原理第七版PDF電子教材免費(fèi)下載
  2. 0.00 MB  |  1491次下載  |  免費(fèi)
  3. 2單片機(jī)典型實(shí)例介紹
  4. 18.19 MB  |  95次下載  |  1 積分
  5. 3S7-200PLC編程實(shí)例詳細(xì)資料
  6. 1.17 MB  |  27次下載  |  1 積分
  7. 4筆記本電腦主板的元件識(shí)別和講解說明
  8. 4.28 MB  |  18次下載  |  4 積分
  9. 5開關(guān)電源原理及各功能電路詳解
  10. 0.38 MB  |  11次下載  |  免費(fèi)
  11. 6100W短波放大電路圖
  12. 0.05 MB  |  4次下載  |  3 積分
  13. 7基于單片機(jī)和 SG3525的程控開關(guān)電源設(shè)計(jì)
  14. 0.23 MB  |  4次下載  |  免費(fèi)
  15. 8基于AT89C2051/4051單片機(jī)編程器的實(shí)驗(yàn)
  16. 0.11 MB  |  4次下載  |  免費(fèi)

本月

  1. 1OrCAD10.5下載OrCAD10.5中文版軟件
  2. 0.00 MB  |  234313次下載  |  免費(fèi)
  3. 2PADS 9.0 2009最新版 -下載
  4. 0.00 MB  |  66304次下載  |  免費(fèi)
  5. 3protel99下載protel99軟件下載(中文版)
  6. 0.00 MB  |  51209次下載  |  免費(fèi)
  7. 4LabView 8.0 專業(yè)版下載 (3CD完整版)
  8. 0.00 MB  |  51043次下載  |  免費(fèi)
  9. 5555集成電路應(yīng)用800例(新編版)
  10. 0.00 MB  |  33562次下載  |  免費(fèi)
  11. 6接口電路圖大全
  12. 未知  |  30320次下載  |  免費(fèi)
  13. 7Multisim 10下載Multisim 10 中文版
  14. 0.00 MB  |  28588次下載  |  免費(fèi)
  15. 8開關(guān)電源設(shè)計(jì)實(shí)例指南
  16. 未知  |  21539次下載  |  免費(fèi)

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935053次下載  |  免費(fèi)
  3. 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
  4. 78.1 MB  |  537793次下載  |  免費(fèi)
  5. 3MATLAB 7.1 下載 (含軟件介紹)
  6. 未知  |  420026次下載  |  免費(fèi)
  7. 4OrCAD10.5下載OrCAD10.5中文版軟件
  8. 0.00 MB  |  234313次下載  |  免費(fèi)
  9. 5Altium DXP2002下載入口
  10. 未知  |  233046次下載  |  免費(fèi)
  11. 6電路仿真軟件multisim 10.0免費(fèi)下載
  12. 340992  |  191183次下載  |  免費(fèi)
  13. 7十天學(xué)會(huì)AVR單片機(jī)與C語言視頻教程 下載
  14. 158M  |  183277次下載  |  免費(fèi)
  15. 8proe5.0野火版下載(中文版免費(fèi)下載)
  16. 未知  |  138039次下載  |  免費(fèi)