三維圖像信息處理一直是圖像視頻處理領(lǐng)域的熱點(diǎn)和難點(diǎn),目前國(guó)內(nèi)外成熟的三維信息處理系統(tǒng)不多,已有的系統(tǒng)主要依賴高性能通用PC完成圖像采集、預(yù)處理、重建、構(gòu)型等囊括底層和高層的處理工作。三維圖像處理數(shù)據(jù)量特別大、運(yùn)算復(fù)雜,單純依靠通用PC很難達(dá)到實(shí)時(shí)性要求,不能滿足現(xiàn)行高速三維圖像處理應(yīng)用。
???
本系統(tǒng)中,采用FPGA實(shí)現(xiàn)底層的信號(hào)預(yù)處理算法,其處理數(shù)據(jù)量很大,處理速度高,但算法結(jié)構(gòu)相對(duì)比較簡(jiǎn)單,可同時(shí)兼顧速度和靈活性。高層處理算法數(shù)據(jù)量較少、算法結(jié)構(gòu)復(fù)雜,可采用運(yùn)算速度快、尋址方式靈活、通信機(jī)制強(qiáng)大的DSP實(shí)現(xiàn)[1,4]。
1 三維圖像處理系統(tǒng)組成
1.1 硬件系統(tǒng)構(gòu)成
???
該系統(tǒng)由五個(gè)模塊組成,如圖1所示。
???
系統(tǒng)信息處理流程見(jiàn)圖2所示。CCD攝像機(jī)采集的多路模擬視頻信號(hào)經(jīng)MAX440按需要選定后,送入模數(shù)視頻轉(zhuǎn)換器SAA7111A將攝像機(jī)輸出的模擬全電視信號(hào)CVBS轉(zhuǎn)換成數(shù)字視頻信號(hào);之后視頻信號(hào)流入圖像預(yù)處理器Spartan XC3S400,經(jīng)過(guò)提取中心顏色線、提取激光標(biāo)志線和物體輪廓線的預(yù)處理后,配送到兩片TS201進(jìn)行定標(biāo)參數(shù)計(jì)算、坐標(biāo)計(jì)算、三維重建、數(shù)據(jù)融合以及三維構(gòu)型的核心運(yùn)算;最后將DXF文件數(shù)據(jù)經(jīng)由PCI接口傳送到PC,完成三維圖像變換和顯示等最終處理;整個(gè)系統(tǒng)的邏輯連接和控制以及部分?jǐn)?shù)據(jù)交換由另一片F(xiàn)PGA來(lái)完成[1]。
???
在體系結(jié)構(gòu)設(shè)計(jì)上,F(xiàn)PGA處理器采用SIMD結(jié)構(gòu),在一個(gè)控制單元產(chǎn)生的控制信號(hào)下,數(shù)據(jù)通路中的三個(gè)算法并行運(yùn)行。由于該系統(tǒng)要求處理速度較高,因而在數(shù)據(jù)通路中采用了流水線技術(shù)以提高速度。此外,本系統(tǒng)中為圖像存儲(chǔ)采用了許多大容量高速FIFO,以達(dá)到減少地址線,簡(jiǎn)化控制的目的。
1.2 處理器芯片
???
為滿足系統(tǒng)大數(shù)據(jù)量快速處理的要求,三款核心芯片均為最新高性能產(chǎn)品,其硬件方面的特點(diǎn)給系統(tǒng)設(shè)計(jì)帶來(lái)極大的方便,其優(yōu)異的運(yùn)算性能可確保系統(tǒng)的快速實(shí)時(shí)性。
???
FPGA芯片采用Xilinx公司近期推出的采用90nm工藝的Spartan3系列的XC3S400,該系列芯片是目前為止工藝最先進(jìn)、價(jià)格較低、單位成本內(nèi)I/O管腳最多的平臺(tái)級(jí)可編程邏輯器件。XC3S400芯片內(nèi)部時(shí)鐘頻率可達(dá)326MHz,信號(hào)擺幅1.14V和3.45V,I/O口支持622Mbps的數(shù)據(jù)傳輸率,具有高性能SelectRAM內(nèi)部存儲(chǔ)器,多達(dá)4個(gè)數(shù)字時(shí)鐘管理器模塊和8個(gè)全局時(shí)鐘多路復(fù)用緩沖器。
???
DSP采用ADI公司的最新款基于并行處理設(shè)計(jì)、具有海量片內(nèi)RAM的TigerSHARC ADSP TS201。其內(nèi)部集成的RAM容量高達(dá)24Mbit,核心速度最高達(dá)600MHz。內(nèi)設(shè)雙運(yùn)算模塊,每個(gè)包含一個(gè)ALU、MUL、64bit移位寄存器、32個(gè)32bit寄存器組和一個(gè)128bit通信邏輯單元,相關(guān)的數(shù)據(jù)對(duì)齊緩沖器;雙整數(shù)ALU,各有獨(dú)立的寄存器組,提供數(shù)據(jù)尋址和指針操作;4個(gè)128bit寬度內(nèi)部總線,每個(gè)都連接到6個(gè)4Mbit的內(nèi)部存儲(chǔ)器塊;提供與主機(jī)處理器、多處理器空間、片外存儲(chǔ)器映射外設(shè)、外部SRAM和SDRAM相連的外部端口;14通道DMA控制器;4個(gè)全雙工低電壓差分信號(hào)輸入的Link Port;具有片內(nèi)仲裁總線,用于多DSP無(wú)縫的連接。
???
數(shù)字化器采用了Philips公司的增強(qiáng)視頻輸入處理器(EVIP)——SAA7111A模數(shù)轉(zhuǎn)換器。該產(chǎn)品廣泛應(yīng)用于個(gè)人視頻、多媒體、數(shù)字電視、可視電話、圖像處理、實(shí)時(shí)監(jiān)控等領(lǐng)域,純3.3V CMOS工藝的模擬視頻前端和數(shù)字視頻編碼器,能夠?qū)AL/TSC/ECAM視頻信號(hào)解碼為與CCIR-601相兼容的多種數(shù)字視頻格式,支持TV或VTR信號(hào)源的CVBS或S-Video視頻信號(hào),最高圖像分辨率可達(dá)720×576,支持24位真彩色,可以通過(guò)串行總線動(dòng)態(tài)配置
SAA7111A模數(shù)轉(zhuǎn)換器的工作方式和各種參數(shù)。
2 模塊設(shè)計(jì)
2.1 視頻采集與數(shù)字化模塊
???
由于模擬攝像機(jī)采集的是PAL制的復(fù)合視頻信號(hào)(CVBS),所以必須先將其數(shù)字化才能開(kāi)始后繼數(shù)字視頻處理。視頻采集與數(shù)字化模塊主要包括一片視頻多路復(fù)用器MAX440、一片SAA7111A、一片I2C接口控制器PCF8584和一些連接邏輯。MAX440用來(lái)快速切換來(lái)自不同模擬輸入端的模擬視頻流,SAA7111A模數(shù)轉(zhuǎn)換器是該模塊的核心,它采集模擬視頻,將其數(shù)字化為720×576的RGB(8,8,8)真彩色信號(hào)格式的數(shù)字視頻,其輸出的RGB真彩色信號(hào)為16位,其中高字節(jié)和低字節(jié)數(shù)據(jù)周期分別為74ns和37ns,即低字節(jié)的頻率是高字節(jié)的1倍。這樣就要利用觸發(fā)器和兩個(gè)分別為13.5MHz和27MHz的時(shí)鐘信號(hào),將輸入數(shù)據(jù)格式轉(zhuǎn)換為24位、周期均為74ns的RGB真彩色信號(hào),此外,它還為整個(gè)硬件系統(tǒng)提供必要的時(shí)鐘和同步信號(hào);PCI接口控制器通過(guò)PCF8584來(lái)配置和控制SAA7111A,連接邏輯由FPGA實(shí)現(xiàn)。
2.2 FPGA圖像預(yù)處理模塊
???
預(yù)處理從巨大的視頻信息中提取極少量的對(duì)三維重建有用的信息傳送至DSP后處理。該模塊包括主處理FPGA芯片和高速FIFO,負(fù)責(zé)實(shí)時(shí)采集視頻信號(hào)并對(duì)采集到的無(wú)壓縮的視頻信息進(jìn)行預(yù)處理,包括提取激光中心線、提取輪廓線、提取中心顏色線三個(gè)部分。
???
為了提高視頻采集的整體性能,更重要的是為預(yù)處理提供相鄰的有激光幀和無(wú)激光幀,必須通過(guò)視頻幀緩存首先暫存無(wú)激光幀。緩存由3片AverLogic公司的AL422B及一些由FPGA實(shí)現(xiàn)的連接邏輯組成;當(dāng)前端模塊輸出無(wú)激光幀時(shí),SA7111A控制3片AL422B寫(xiě)操作,將其存入FIFO;當(dāng)前端輸出有激光幀時(shí),后端的視頻處理模塊控制3片AL422B進(jìn)行讀操作,讀出暫存在其中的無(wú)激光幀數(shù)據(jù)。預(yù)處理FPGA將讀取的無(wú)激光幀和有激光幀進(jìn)行相減運(yùn)算。輸出同樣采用3組緩存分別用來(lái)暫存激光樣條數(shù)據(jù)、目標(biāo)輪廓線數(shù)據(jù)和圖像中心線數(shù)據(jù);所有模塊均采用同步時(shí)鐘控制,同步時(shí)鐘采用由SAA7111A模數(shù)轉(zhuǎn)換器產(chǎn)生的LLC2信號(hào)。為了提高系統(tǒng)速度,算法復(fù)雜、耗時(shí)較長(zhǎng)的計(jì)算過(guò)程進(jìn)行了流水線處理。
2.3 DSP三維重建模塊
???
為了應(yīng)對(duì)三維圖像大數(shù)據(jù)量復(fù)雜高速運(yùn)算的需要,這里采用了兩片TigerSHARC 201芯片并行三維重建運(yùn)算。由控制FPGA對(duì)兩片DSP所要處理的圖像進(jìn)行任務(wù)分配,DSP結(jié)合預(yù)處理FPGA存入FIFO的數(shù)據(jù)和PCI總線所給處理參數(shù)進(jìn)行定標(biāo)參數(shù)計(jì)算、坐標(biāo)計(jì)算、三維重建和構(gòu)型。由于TS201內(nèi)部集成的總線仲裁機(jī)制,雙DSP可以實(shí)現(xiàn)無(wú)縫連接,大大減小了多DSP協(xié)調(diào)工作的設(shè)計(jì)難度。DSP間的連接是依靠其擁有的全雙工LinkPort,它采用LVDS(低電平差分信號(hào))輸入數(shù)據(jù)。鏈路口能獨(dú)立或同時(shí)工作,在時(shí)鐘的上升沿和下降沿鎖存數(shù)據(jù)。鏈路時(shí)鐘頻率最高可以與處理器核相同,高達(dá)500MHz,每個(gè)鏈路能完成500Mbps的單向數(shù)據(jù)傳輸。每個(gè)DSP的4個(gè)LinkPort合起來(lái)最大的通透率為4.0Gbps。連線短且簡(jiǎn)單,不需要額外的輔助電路,且可有效防止連線長(zhǎng)引起的信號(hào)畸變。LinkPort傳輸協(xié)議由控制FPGA完成。
2.4 PCI通信接口模塊
???
根據(jù)三維信息獲取系統(tǒng)的速度傳輸要求,采用PCI接口完成該系統(tǒng)與通用PC的信息交互。PCI接口控制器是硬件部分的控制中心和數(shù)據(jù)交換中心,它接收設(shè)備驅(qū)動(dòng)程序的命令和數(shù)據(jù),配置和控制系統(tǒng)的各個(gè)模塊使其協(xié)調(diào)工作,完成系統(tǒng)任務(wù);它還負(fù)責(zé)將采集到和處理后的數(shù)據(jù)通過(guò)PCI總線轉(zhuǎn)送給通用PC。本系統(tǒng)采用PLX公司的32bit/33MHz PCI9030作為接口芯片,串行EEPROM-FM93CS56L電可擦除只讀存儲(chǔ)器保存PCI9030的配置信息。
2.5 系統(tǒng)控制與數(shù)據(jù)交換模塊
???
控制單元對(duì)處理器的數(shù)據(jù)處理單元和輸入數(shù)據(jù)格式轉(zhuǎn)換單元以及所有FIFO存儲(chǔ)器產(chǎn)生控制,與預(yù)處理FPGA配合完成DSP的LinkPort協(xié)議。由于數(shù)據(jù)處理單元中為流水處理,在控制單元的設(shè)計(jì)中要特別注意由流水線產(chǎn)生的固定周期的延時(shí),延時(shí)的周期數(shù)等于相應(yīng)流水線的級(jí)數(shù)。控制單元還與PCI接口連接,接收來(lái)自主計(jì)算機(jī)的控制信號(hào)和背景閾值等信息??刂艶PGA還是SAA7111A、PCI接口和DSP之間的圖像和信息交換的橋梁,為其提供所需要的參數(shù)和數(shù)據(jù)信息。
3 軟件設(shè)計(jì)與實(shí)現(xiàn)
3.1 圖像預(yù)處理算法
???
如圖3,激光帶預(yù)處理算法的實(shí)現(xiàn)[2]為:由于有激光幀和無(wú)激光幀是依次交替產(chǎn)生的,因此首先要保存一幀有激光幀,在其下一幀,即無(wú)激光幀到來(lái)時(shí),將保存的有激光幀和當(dāng)前無(wú)激光幀的相同行、列的點(diǎn)相減,再對(duì)結(jié)果進(jìn)行亮度提取,處理完成后的數(shù)據(jù)存入目標(biāo)緩存。
???
如圖4,實(shí)現(xiàn)提取輪廓線算法分為三個(gè)部分[3],首先由計(jì)算比較模塊對(duì)輸入像素點(diǎn)的值與預(yù)先計(jì)算好的閾值進(jìn)行比較,判斷其是否為目標(biāo)像素;然后利用一個(gè)序列檢測(cè)模塊進(jìn)行一維尺度濾波以去除某些噪聲點(diǎn);再經(jīng)過(guò)一個(gè)邊緣檢測(cè)模塊,提取出每行的第一個(gè)目標(biāo)像素作為目標(biāo)的左邊緣點(diǎn);完成后將此點(diǎn)所對(duì)應(yīng)的列地址數(shù)據(jù)存入目標(biāo)緩存。在某些情況下,可能整行都檢測(cè)不到邊緣點(diǎn),這時(shí)將0存入目標(biāo)緩存作為無(wú)邊緣點(diǎn)的標(biāo)識(shí)。
???
提取中心線算法實(shí)現(xiàn)比較簡(jiǎn)單,只需對(duì)目標(biāo)緩存的寫(xiě)允許信號(hào)加以控制,使RGB數(shù)據(jù)只能在每行的中心點(diǎn)處寫(xiě)入目標(biāo)緩存即可。
3.2 三維重建和構(gòu)型
???
如圖5所示,高速DSP將根據(jù)預(yù)處理信息得到的激光標(biāo)志線、輪廓線和中心顏色線數(shù)據(jù)與源數(shù)字化圖像結(jié)合起來(lái)進(jìn)行三維重建。首先根據(jù)獲取的圖像標(biāo)志點(diǎn)數(shù)據(jù)結(jié)合控制點(diǎn)三維坐標(biāo)數(shù)據(jù)計(jì)算出系統(tǒng)定標(biāo)數(shù)據(jù);其次根據(jù)輪廓線計(jì)算物體外表面展開(kāi)圖,再依據(jù)定標(biāo)數(shù)據(jù)結(jié)合展開(kāi)圖和機(jī)械參數(shù)對(duì)圖像中的坐標(biāo)點(diǎn)進(jìn)行計(jì)算,給出數(shù)據(jù)集,輸出深度數(shù)據(jù)文件;最后對(duì)多次掃描的數(shù)據(jù)進(jìn)行融合,將離散點(diǎn)構(gòu)型成立體模型(或立體彩色模型),將模型生成DXF、STL等數(shù)據(jù)文件傳入PC機(jī),使用后端處理軟件進(jìn)行顯示[3]。
3.3 算法實(shí)現(xiàn)
???
圖像預(yù)處理算法設(shè)計(jì)使用Verilog HDL在Xilinx公司的ISE8.1集成編譯環(huán)境下成功實(shí)現(xiàn);FPGA開(kāi)發(fā)流程不再贅述。
???
DSP三維重建算法已使用C語(yǔ)言在ADI公司Visual DSP++環(huán)境下成功實(shí)現(xiàn)[4]。算法實(shí)現(xiàn)步驟如下:①用C語(yǔ)言編程實(shí)現(xiàn)算法。②使用Visual DSP++編譯器將源程序編譯成目標(biāo)文件。③根據(jù)產(chǎn)生的目標(biāo)文件,分析結(jié)果及源程序結(jié)構(gòu)并優(yōu)化源代碼。④應(yīng)用TigerSHARC 201評(píng)估板進(jìn)行運(yùn)算時(shí)間評(píng)估。⑤重復(fù)上述步驟直至達(dá)到系統(tǒng)實(shí)時(shí)性要求,最后下載到目標(biāo)板。
???
整個(gè)系統(tǒng)聯(lián)機(jī)運(yùn)行穩(wěn)定,滿足設(shè)計(jì)要求,實(shí)時(shí)性好。
???
實(shí)時(shí)三維圖像信息處理以其數(shù)據(jù)量大、速度要求高、處理過(guò)程復(fù)雜的特點(diǎn)使其難以使用集成電路實(shí)現(xiàn)。本文研究的以目前最新高性能處理器的FPGA+DSP為核心架構(gòu)的三維圖像處理系統(tǒng)精心設(shè)計(jì)了算法的硬件實(shí)現(xiàn),充分利用了兩種處理器的長(zhǎng)處。實(shí)驗(yàn)表明,該系統(tǒng)有著良好的性能,對(duì)實(shí)現(xiàn)基于網(wǎng)絡(luò)的實(shí)時(shí)三維掃描應(yīng)用,如三維傳真、機(jī)械遠(yuǎn)程加工、快速成型和虛擬現(xiàn)實(shí),有著重要的意義。
參考文獻(xiàn)
[1] LEI HAIJUN,LI DEHUA.High-Speed aerial image processing system based on DSP,In neural nerwork and distributed processing,Proceedings of SPIE Vol.4555,2001:131-136
[2] 雷海軍,李德華,王建永等.一種結(jié)構(gòu)光條紋中心快速檢測(cè)方法[J].華中科技大學(xué)學(xué)報(bào),2003,31(1):74-76.
[3] 金 剛.三維掃描儀中三維信息獲取理論與技術(shù)研究[D].華中科技大學(xué)博士學(xué)位論文,2002,(3)
[4] 陸海東,吳明贊.基于FPGA+DSP結(jié)構(gòu)的小波圖像處理系統(tǒng)設(shè)計(jì)[J],電子技術(shù)應(yīng)用,2006,(3)93-95
評(píng)論
查看更多