電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>光電顯示>淺談光學(xué)成像系統(tǒng)的成像體制

淺談光學(xué)成像系統(tǒng)的成像體制

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

學(xué)成像技術(shù)在局部放電監(jiān)測(cè)中的應(yīng)用

借助FLIR Si124之類的聲學(xué)成像儀,公用部門可以分析局部放電模式,利用自動(dòng)漏電成本估算和放電類型分類工具,優(yōu)先安排維修工作,安全快速地進(jìn)行非接觸式檢查。
2021-03-31 14:20:572575

基于ZEMAX設(shè)計(jì)的寬光譜可見(jiàn)-短波紅外成像光學(xué)系統(tǒng)

光學(xué)系統(tǒng)結(jié)構(gòu)的選擇與該系統(tǒng)的應(yīng)用場(chǎng)景密切相關(guān),在機(jī)器視覺(jué)領(lǐng)域中,短波紅外波段的成像系統(tǒng)往往具有大視場(chǎng)、小畸變和成像質(zhì)量穩(wěn)定的特點(diǎn)。合理地選擇光學(xué)系統(tǒng)結(jié)構(gòu)能夠降低設(shè)計(jì)的復(fù)雜度。
2023-05-08 17:47:451045

360度全息幻影成像

360度全息幻影成像系統(tǒng)是利用光學(xué)原理,將3D影像懸浮在柜體實(shí)景裝置中的成像系統(tǒng)。也被稱之為三維全息影像、全息三維成像,觀眾的視線能從四面中任何一面穿透它,通過(guò)折射和反射,觀眾能從錐形空間里看到自由
2013-09-11 17:12:56

成像探測(cè)儀

有朋友研究成像探測(cè)儀嗎(地下探寶)
2016-10-26 22:49:53

AutoVision成像解決方案怎么助力輔助駕駛系統(tǒng)應(yīng)用?

高級(jí)數(shù)字成像解決方案供應(yīng)商OmniVision發(fā)布的最新 AutoVision 成像解決方案可滿足汽車業(yè)對(duì)輔助駕駛系統(tǒng)應(yīng)用(如倒車攝像頭和后視鏡死角監(jiān)視系統(tǒng))更高成像效果的要求。1/4 英寸的超小巧 OV7960 和 OV7962 型號(hào)可提供優(yōu)異的低光性能 (
2019-08-16 06:37:42

EIP在磁共振成像系統(tǒng)中的應(yīng)用

EIP在磁共振成像系統(tǒng)中的應(yīng)用 原理:核磁共振(Nuclear Magnetic Resonance)作為一種物理現(xiàn)象,用于物理學(xué)、化學(xué)、生物學(xué)核醫(yī)學(xué)領(lǐng)域已有30多年的歷史
2009-11-30 11:28:51

【AD新聞】中國(guó)深圳先進(jìn)院在高分辨率超聲成像領(lǐng)域取得重要進(jìn)展

日前,中國(guó)科學(xué)院深圳先進(jìn)技術(shù)研究院鄭海榮研究員領(lǐng)銜的勞特伯醫(yī)學(xué)成像研究中心在高分辨率超聲成像方向取得新進(jìn)展,勞特伯醫(yī)學(xué)成像研究中心邱維寶博士課題組(以下簡(jiǎn)稱課題組)在高頻超聲換能器、超聲電子系統(tǒng)
2018-03-23 14:59:13

不同醫(yī)學(xué)成像方法電子設(shè)計(jì)的挑戰(zhàn)

的一些新進(jìn)展,讓成像系統(tǒng)實(shí)現(xiàn)了史無(wú)前例的電子封裝密度,從而帶來(lái)醫(yī)學(xué)成像的巨大發(fā)展。同時(shí),嵌入式處理器極大地提高了醫(yī)療圖像處理和實(shí)時(shí)圖像顯示的能力,從而實(shí)現(xiàn)了更迅速、更準(zhǔn)確的診斷。這些技術(shù)的融合以及許多新興
2019-05-16 10:44:47

不同醫(yī)學(xué)數(shù)字成像設(shè)的挑戰(zhàn)

70 年代早期醫(yī)學(xué)成像數(shù)字技術(shù)出現(xiàn)以來(lái),數(shù)字成像的重要性得以日益彰顯。半導(dǎo)體器件中混合信號(hào)設(shè)計(jì)能力方面的一些新進(jìn)展,讓成像系統(tǒng)實(shí)現(xiàn)了史無(wú)前例的電子封裝密度,從而帶來(lái)醫(yī)學(xué)成像的巨大發(fā)展。同時(shí),嵌入式處理器
2019-07-10 06:11:12

關(guān)于毛玻璃后的成像系統(tǒng)設(shè)計(jì)

請(qǐng)問(wèn)一下大佬們,關(guān)于毛玻璃后的成像系統(tǒng)設(shè)計(jì)應(yīng)該是按照什么步驟來(lái)進(jìn)行的,利用CMOS如何檢測(cè)毛玻璃后的物體的成像情況。才接觸到這方面,能給一下思路嗎,非常感謝QAQ
2017-11-24 17:42:18

醫(yī)學(xué)成像中的時(shí)鐘分發(fā)系統(tǒng)設(shè)計(jì)簡(jiǎn)介

信號(hào)在系統(tǒng)內(nèi)的傳輸。本文中,我們將討論大型成像設(shè)備的時(shí)鐘分發(fā)系統(tǒng),而這對(duì)設(shè)計(jì)工程師們而言是一大挑戰(zhàn)?! ?970年代中后期,計(jì)算機(jī)X射線軸向分層造影(CAT)掃描就已經(jīng)出現(xiàn)在醫(yī)學(xué)界了。計(jì)算機(jī)處理能力
2012-11-27 17:28:43

醫(yī)學(xué)數(shù)字成像

設(shè)計(jì)能力方面的一些新進(jìn)展,讓成像系統(tǒng)實(shí)現(xiàn)了史無(wú)前例的電子封裝密度,從而帶來(lái)醫(yī)學(xué)成像的巨大發(fā)展。同時(shí),嵌入式處理器極大地提高了醫(yī)療圖像處理和實(shí)時(shí)圖像顯示的能力,從而實(shí)現(xiàn)了更迅速、更準(zhǔn)確的診斷。這些技術(shù)的融合
2010-12-21 10:13:44

基于矢量成像技術(shù)對(duì)PCB上元件的檢測(cè)

適應(yīng)線路板上的每一個(gè)元件,而不管其形狀、大小和方向。當(dāng)把元件模型從一臺(tái)視像檢查設(shè)備轉(zhuǎn)移到另一臺(tái)光學(xué)系統(tǒng)不同的設(shè)備上時(shí),所得到的圖像大小會(huì)發(fā)生改變,但此時(shí)系統(tǒng)能自動(dòng)對(duì)變化進(jìn)行處理。  此外,矢量成像技術(shù)
2018-09-17 17:13:11

夜視技術(shù)中的微光成像和紅外熱成像技術(shù)有什么不同?

夜視技術(shù)中的微光成像和紅外熱成像技術(shù)有什么不同?
2021-06-03 07:08:26

如何去設(shè)計(jì)成像制導(dǎo)仿真圖像生成仿真系統(tǒng)

成像制導(dǎo)仿真系統(tǒng)是由哪些部分組成的?一種基于DSP處理器的成像制導(dǎo)圖像生成仿真系統(tǒng)設(shè)計(jì)
2021-06-04 06:30:24

常見(jiàn)的現(xiàn)代醫(yī)療成像系統(tǒng)有哪幾種?

主要的現(xiàn)代醫(yī)療成像系統(tǒng)實(shí)現(xiàn)最佳工作性能的高級(jí)數(shù)據(jù)轉(zhuǎn)換器和集成解決方案
2021-03-10 06:18:12

微光工業(yè)成像應(yīng)用的新技術(shù)

器件的成像細(xì)節(jié)。采用4 / 3光學(xué)格式(22.2毫米對(duì)角線)和1:1的縱橫比,該新的傳感器直接匹配專業(yè)顯微鏡的成像路徑,使它適用于科學(xué)成像應(yīng)用如高分辨率顯微鏡,以及安防和監(jiān)控等應(yīng)用。在這些微光應(yīng)用中推動(dòng)
2018-10-22 09:01:08

怎么設(shè)計(jì)基于FPGA多波束成像的聲納系統(tǒng)

多波束成像聲納利用了數(shù)字成像技術(shù),在海底探測(cè)范圍內(nèi)形成距離一方位二維聲圖像,具有很高的系統(tǒng)穩(wěn)定性和很強(qiáng)的信號(hào)處理能力。但是由于數(shù)字成像系統(tǒng)數(shù)據(jù)運(yùn)算量大、需要實(shí)時(shí)成像等特點(diǎn),對(duì)處理器性能要求很高。隨著
2019-10-09 06:04:36

無(wú)人機(jī)紅外雙光熱成像吊艙的應(yīng)用

120倍測(cè)溫型紅外雙光熱成像云臺(tái)相機(jī)吊艙120倍變焦230萬(wàn)像素可見(jiàn)光機(jī)芯,30倍光學(xué)變焦,4倍數(shù)碼變焦,熱成像640*480分辨率、50Hz、25mm鏡頭非制冷熱成像機(jī)芯。具備目標(biāo)跟隨功能,紅外雙
2020-09-09 19:55:52

測(cè)試測(cè)量與醫(yī)學(xué)成像領(lǐng)域的模擬技術(shù)未來(lái)將如何發(fā)展?

本文將給出測(cè)試測(cè)量與醫(yī)學(xué)成像應(yīng)用領(lǐng)域的實(shí)例,并討論未來(lái)的發(fā)展趨勢(shì)。
2021-05-13 06:34:04

現(xiàn)代醫(yī)療成像系統(tǒng)在不同成像模式環(huán)境中有什么挑戰(zhàn)?

在醫(yī)療成像領(lǐng)域的電子設(shè)計(jì)中,數(shù)據(jù)轉(zhuǎn)換器的動(dòng)態(tài)范圍、分辨率、精度、線性度和噪聲要求帶來(lái)了最嚴(yán)苛的挑戰(zhàn)。
2019-07-30 06:11:51

紅外成像儀探頭組成

紅外熱成像儀的探頭有哪些傳感器或光學(xué)元件組成?
2018-11-19 18:56:12

紅外熱成像的原理是什么? 紅外熱成像技術(shù)有什么作用?

紅外熱成像的原理是什么?紅外熱成像技術(shù)有什么作用?
2021-06-26 07:26:34

紅外熱成像組件測(cè)試分析系統(tǒng)

紅外熱成像組件測(cè)試分析系統(tǒng)
2012-08-03 23:35:22

紅外穿墻成像

一般的紅外只能在沒(méi)有障礙物的情況下成像,有沒(méi)有可以穿障礙物的紅外成像技術(shù),我們想用在消防救援上面。
2020-08-11 11:18:09

解析不同醫(yī)學(xué)數(shù)字成像方法電子設(shè)計(jì)

的一些新進(jìn)展,讓成像系統(tǒng)實(shí)現(xiàn)了史無(wú)前例的電子封裝密度,從而帶來(lái)醫(yī)學(xué)成像的巨大發(fā)展。同時(shí),嵌入式處理器極大地提高了醫(yī)療圖像處理和實(shí)時(shí)圖像顯示的能力,從而實(shí)現(xiàn)了更迅速、更準(zhǔn)確的診斷。這些技術(shù)的融合以及許多
2012-12-06 15:55:10

基于windows仿真光學(xué)遙感微秒實(shí)時(shí)通信

介紹并實(shí)現(xiàn)了基于windows 仿真光學(xué)成像遙感器微秒精度實(shí)時(shí)通信的方法。描述了衛(wèi)星有效載荷控制系統(tǒng)光學(xué)成像遙感器實(shí)時(shí)通信的原理,以及在windows 環(huán)境下獲取高精度時(shí)間的方
2009-09-24 10:56:346

基于windows仿真光學(xué)遙感微秒實(shí)時(shí)通信

介紹并實(shí)現(xiàn)了基于windows 仿真光學(xué)成像遙感器微秒精度實(shí)時(shí)通信的方法。描述了衛(wèi)星有效載荷控制系統(tǒng)光學(xué)成像遙感器實(shí)時(shí)通信的原理,以及在windows 環(huán)境下獲取高精度時(shí)間的方
2009-12-12 15:32:4112

光學(xué)神經(jīng)成像研究發(fā)展趨勢(shì)

光學(xué)神經(jīng)成像研究發(fā)展趨勢(shì) 大腦功能的成像檢測(cè)在認(rèn)知神經(jīng)科學(xué)領(lǐng)域具有重要意義。 現(xiàn)代光子學(xué)技術(shù)的發(fā)展為認(rèn)知腦成像提供了新的研究手段"可在神經(jīng)系統(tǒng)
2010-02-26 17:06:4730

共聚焦顯微鏡3D光學(xué)成像系統(tǒng)

中圖儀器VT6000系列共聚焦顯微鏡3D光學(xué)成像系統(tǒng)在測(cè)量漸變較大的高度時(shí),跟其他方法相比,可以更精確量測(cè)物體高度,建立3D立體影像。它以共聚焦技術(shù)為原理,結(jié)合精密Z向掃描模塊、3D 建模算法等
2023-09-27 11:40:02

紅外成像系統(tǒng)光學(xué)設(shè)計(jì)

 推導(dǎo)了以反射式兩鏡系統(tǒng)為主體的紅外成像系統(tǒng)中滿足光瞳匹配要求的轉(zhuǎn)像透鏡的高斯光學(xué)參量與兩鏡系統(tǒng)參量的關(guān)系式。當(dāng)選定紅外焦平面的冷屏直徑及到焦面的距離后,轉(zhuǎn)
2011-01-04 17:36:350

飛利浦開(kāi)展新型醫(yī)學(xué)成像技術(shù)PET/MR研究

飛利浦開(kāi)展新型醫(yī)學(xué)成像技術(shù)PET/MR研究 飛利浦醫(yī)療保健領(lǐng)導(dǎo)的Union-funded HYPERImage成像項(xiàng)目已經(jīng)實(shí)現(xiàn)了里程碑式進(jìn)展,該項(xiàng)目創(chuàng)建一個(gè)新的醫(yī)學(xué)成像技術(shù),即混合型 PET/MR
2009-12-05 17:19:581051

切倫科夫冷光成像的新型光學(xué)成像技術(shù)分析

美國(guó)核醫(yī)學(xué)學(xué)會(huì)7月1日表示,新出版的《核醫(yī)學(xué)雜志》報(bào)道了名為切倫科夫冷光成像(Cerenkov luminescence imaging)的新型光學(xué)成像技術(shù)。據(jù)文章作者介紹,新技術(shù)有望幫助人們?cè)\治癌癥
2010-07-12 08:38:35710

不同醫(yī)學(xué)成像方法電子設(shè)計(jì)存在的挑戰(zhàn)

自20世紀(jì)70年代早期醫(yī)學(xué)成像數(shù)字技術(shù)出現(xiàn)以來(lái),數(shù)字成像的重要性得以日益彰顯。半導(dǎo)體器件中混合信號(hào)設(shè)計(jì)能力方面的一些新進(jìn)展,讓成像系統(tǒng)實(shí)現(xiàn)了史無(wú)前例的電子封裝密度,
2010-08-06 10:09:24443

醫(yī)學(xué)成像:兩高一低新風(fēng)尚

電子發(fā)燒友網(wǎng)核心提示 :與所有非常依賴科技進(jìn)步的行業(yè)一樣,醫(yī)學(xué)成像設(shè)備廠商不得不持續(xù)改進(jìn)他們的產(chǎn)品主要是改進(jìn)系統(tǒng)成像質(zhì)量。無(wú)論是超聲波反射聲波、核磁共振成像(MR
2012-10-18 09:45:221496

核醫(yī)學(xué)成像設(shè)備基礎(chǔ)知識(shí)詳解

核醫(yī)學(xué)成像設(shè)備是指探測(cè)并顯示放射性核素藥物體內(nèi)分布圖像的設(shè)備。本文介紹核醫(yī)學(xué)成像設(shè)備分類及特點(diǎn)、核醫(yī)學(xué)成像的過(guò)程和基本條件以及 核醫(yī)學(xué)成像的基本特點(diǎn)。
2012-11-14 16:31:219321

醫(yī)學(xué)成像技術(shù)“看病”?智能手機(jī)聽(tīng)診?

隨著科學(xué)技術(shù)的現(xiàn)代化與數(shù)字化發(fā)展,醫(yī)學(xué)成像技術(shù)能輔助醫(yī)生“看病”,智能手機(jī)也能幫助醫(yī)生聽(tīng)診。
2013-01-15 10:19:311112

超分辨定位顯微光學(xué)成像技術(shù)詳述

超分辨定位顯微成像是本世紀(jì)光學(xué)顯微成像領(lǐng)域最重要的突破,實(shí)現(xiàn)了20 nm的超高空間分辨率,為科學(xué)研究的諸多領(lǐng)域,尤其是生物體內(nèi)微小精細(xì)結(jié)構(gòu)的結(jié)構(gòu)與功能研究,提供了前所未有的工具。但是,從該技術(shù)
2017-10-25 11:17:3315

光學(xué)成像與激光散斑成像技術(shù)的介紹

光學(xué)成像能獲取組織和細(xì)胞的結(jié)構(gòu)和功能信息,在生命科學(xué)的基礎(chǔ)研究與應(yīng)用研究中表現(xiàn)出巨大潛力。但在活體研究時(shí),組織的高散射限制了光在組織中的穿透深度,從而影響了成像的分辨率和對(duì)比度。利用外科手術(shù)建立起來(lái)
2017-10-26 10:18:4812

基于等離子激元增強(qiáng)拉曼散射的單分子化學(xué)成像技術(shù)

本文詳細(xì)介紹了基于等離激元增強(qiáng)拉曼散射的單分子化學(xué)成像技術(shù)。
2017-10-27 14:37:1216

最創(chuàng)新的近紅外二區(qū)熒光/生物發(fā)光雙模式光學(xué)成像技術(shù)

在眾多影像技術(shù)中,活體光學(xué)成像技術(shù)具有成像速度快、靈敏度高、可以進(jìn)行多通道成像以及經(jīng)濟(jì)快捷等特點(diǎn),已被廣泛應(yīng)用于干細(xì)胞示蹤研究。
2018-03-15 15:50:257793

光學(xué)相干斷層成像術(shù)(OCT)系統(tǒng)在醫(yī)學(xué)應(yīng)用

觀看Ryan Brown和Changho Chong博士談?wù)撌澜缟献钚〉?b class="flag-6" style="color: red">光學(xué)相干斷層成像術(shù)(OCT)系統(tǒng),它可以用來(lái)掃描你的皮膚,并快速準(zhǔn)確的得到血管內(nèi)成像。 他運(yùn)用NI FlexRIO技術(shù)實(shí)現(xiàn)從原型到部署的環(huán)節(jié)。
2018-06-25 02:51:003721

醫(yī)學(xué)成像配準(zhǔn)的詳細(xì)資料說(shuō)明

本文檔詳細(xì)介紹的是醫(yī)學(xué)成像配準(zhǔn)的詳細(xì)資料說(shuō)明主要內(nèi)容包括了:1.介紹,2.配準(zhǔn)方法,3.配準(zhǔn)框架,4.模塊綜述,5.基于大腦的PET和MR圖像快速和魯棒配準(zhǔn)
2019-03-06 08:00:0015

編碼光片陣列顯微術(shù)提高3D成像速度

國(guó)外研究團(tuán)隊(duì)開(kāi)發(fā)了一種新的光學(xué)成像技術(shù)——編碼光片陣列顯微術(shù)(CLAM),它可以高速進(jìn)行3D成像,并且具有足夠的功率效率和柔和度,能夠在掃描過(guò)程中以現(xiàn)有技術(shù)無(wú)法達(dá)到的水平保存活體標(biāo)本。
2020-05-04 17:22:001914

光學(xué)成像系統(tǒng)的原理

理想光學(xué)系統(tǒng)就是能對(duì)任意寬空間內(nèi)的點(diǎn),以任意寬的光束成完善像的光學(xué)系統(tǒng),這種系統(tǒng)具有"點(diǎn)對(duì)應(yīng)點(diǎn)、直線對(duì)應(yīng)直線、平面對(duì)應(yīng)平面"的一一對(duì)應(yīng)關(guān)系。物和像的這種關(guān)系稱為共軛。
2020-08-11 10:05:3713475

蘋果提出利用短波紅外光學(xué)成像來(lái)進(jìn)行指紋識(shí)別

蘋果的專利和當(dāng)下流行的屏下指紋識(shí)別不同,它的方法是:光學(xué)成像系統(tǒng)會(huì)向上發(fā)射短波紅外光,短波紅外光會(huì)與手指相互作用,并根據(jù)與屏幕接觸的脊線的存在反射光線。然后,反射的紅外光會(huì)被同一個(gè)光學(xué)成像系統(tǒng)中的光敏元件接收,它可以呈現(xiàn)出指紋的一部分進(jìn)行分析。
2020-11-04 14:32:162645

一文淺談太赫茲二維成像系統(tǒng)及其成像的方法

THz(太赫茲)成像是THz技術(shù)的重要應(yīng)用方向之一,1995年,B.B.Hu和M.C.Nuss利用THz時(shí)域光譜系統(tǒng)實(shí)現(xiàn)了對(duì)新鮮樹(shù)葉和集成電路的掃描成像,該工作被視為THz成像領(lǐng)域的里程碑,直觀而清晰的透射掃描圖像證明了THz波在成像領(lǐng)域的巨大潛力。
2020-12-25 14:02:27384

關(guān)于3D視覺(jué)成像技術(shù)方案的簡(jiǎn)述

3D視覺(jué)成像是工業(yè)機(jī)器人信息感知的一種最重要的方法,可分為光學(xué)和非光學(xué)成像方法。
2021-03-12 10:48:536197

基于全新的單光子成像雷達(dá)系統(tǒng),實(shí)現(xiàn)了百公里單光子三維成像

近期發(fā)表于國(guó)際知名學(xué)術(shù)期刊《光學(xué)》。 看得更遠(yuǎn)、更清,是人類的不懈追求。單光子成像雷達(dá)作為一種具有單光子級(jí)探測(cè)靈敏度和皮秒級(jí)時(shí)間分辨率的新興激光雷達(dá)成像技術(shù),是實(shí)現(xiàn)遠(yuǎn)距離光學(xué)成像的理想方案。然而,如何實(shí)現(xiàn)遠(yuǎn)距離單
2021-03-25 14:44:002603

光學(xué)成像系統(tǒng)之景深概念與原理及計(jì)算說(shuō)明

攝影機(jī)鏡頭或其他成像器前沿能夠取得清晰圖像的成像所測(cè)定的被攝物體前后距離范圍。通俗講即被拍攝物體對(duì)焦點(diǎn)平面處的景物,在膠片上會(huì)形成清晰影像,在對(duì)焦點(diǎn)平面的前方某處到其后方某處有一個(gè)范圍,其內(nèi)的景物都能形成清晰影像,這一范圍稱為景深,討論景深,一般我們用“深淺”形容,即淺景深或大景深。
2021-04-14 14:27:3911483

剖析聲學(xué)成像儀在高壓局部放電中的應(yīng)用原理

學(xué)成像儀:智能除噪,結(jié)果準(zhǔn)確 電氣承包商選擇檢測(cè)局部放電的工具本身,也可能會(huì)導(dǎo)致人們對(duì)局部放電的識(shí)別效果產(chǎn)生誤解。比如,局部放電以40 kHz的頻率恒定地發(fā)出超聲波,許多聲學(xué)成像設(shè)備就只有這個(gè)頻率
2021-05-19 10:00:422856

基于深度學(xué)習(xí)的光學(xué)成像算法綜述

光聲成像( otoacoustic Imaging,PA)是一種多物理場(chǎng)耦合的無(wú)創(chuàng)生物醫(yī)學(xué)功能成像技術(shù),它將純光學(xué)成像的高對(duì)比度與超聲成像的高空間分辨率相結(jié)合,可同時(shí)獲得生物組織的結(jié)構(gòu)和功能
2021-06-16 14:58:2210

基于壓電陶瓷光纖相位調(diào)制器的自適應(yīng)光學(xué)綜合孔徑成像遙感器系統(tǒng)

近年來(lái),光學(xué)綜合孔徑成像技術(shù)發(fā)展迅速,它是用多個(gè)小孔徑系統(tǒng)通過(guò)光學(xué)手段合成大孔徑系統(tǒng)來(lái)實(shí)現(xiàn)高分辨率的成像技術(shù)。光學(xué)綜合孔徑成像技術(shù)使得整套成像系統(tǒng)趨于小型化、輕量化,因此,它也是地基和天基大型望遠(yuǎn)鏡系統(tǒng)發(fā)展的重要方向。
2021-07-12 10:06:21756

光學(xué)氣體成像熱像儀的原理

眾所周知,F(xiàn)LIR氣體檢測(cè)熱像儀可以幫助您快速、安全地“看到”數(shù)百種不可見(jiàn)氣體,但并非所有類型的氣體都可以通過(guò)光學(xué)氣體成像 (OGI) 進(jìn)行可視化。詳細(xì)了解使用OGI熱像儀可以看到哪些類型的氣體
2021-09-24 10:11:263929

淺談高光譜成像光譜儀

成像光譜儀的設(shè)計(jì)如其名字,既要“成像”,也要“光譜”,是一種很有特點(diǎn)的光學(xué)系統(tǒng)。 最早的成像光譜儀誕生在美國(guó)。1982年,美國(guó)航空航天局研制出世界上第一臺(tái)方案實(shí)驗(yàn)性成像光譜儀(AIS),并在飛行試驗(yàn)
2021-11-16 10:44:581553

光學(xué)超分辨技術(shù)綜述

為達(dá)到以上要求,人們應(yīng)用了光學(xué)、微電子、計(jì)算機(jī)、機(jī)械制造、信號(hào)處理等各個(gè)學(xué)科的最新成果,來(lái)制造先進(jìn)的現(xiàn)代成像系統(tǒng)。在這些現(xiàn)代成像系統(tǒng)中,又以現(xiàn)代光學(xué)成像系統(tǒng),應(yīng)用最為廣泛。
2022-04-13 14:30:202352

Teledyne FLIR成為紅外熱成像領(lǐng)域的佼佼者

Teledyne FLIR提供多樣化的產(chǎn)品組合,服務(wù)于各行各業(yè)的檢測(cè)工作。無(wú)論是搭載熱成像技術(shù),還是光學(xué)成像技術(shù),亦或是聲學(xué)成像技術(shù),F(xiàn)LIR的產(chǎn)品都為您的檢查工作提供獨(dú)特且精準(zhǔn)的視角。
2022-05-30 17:34:541737

光學(xué)成像系統(tǒng)的功能及其特性參數(shù)

由表可知,1/2in(12.7mm)的鏡頭應(yīng)配1/2in感光面的攝像機(jī),當(dāng)鏡頭的成像尺寸比攝像機(jī)感光面的尺寸大時(shí),不會(huì)影響成像,但實(shí)際成像的視場(chǎng)角要比該鏡頭的標(biāo)稱視場(chǎng)角小,如圖1(a)所示;
2022-06-21 11:01:574300

幾種典型的大視場(chǎng)光學(xué)顯微成像技術(shù)及生物醫(yī)學(xué)應(yīng)用

光學(xué)成像系統(tǒng)的信息通量常用空間帶寬積(Space-Bandwidth Product,SBP)來(lái)衡量,SBP是一個(gè)無(wú)量綱數(shù),可以理解為系統(tǒng)視場(chǎng)(Field of view,F(xiàn)OV)內(nèi)可分辨的像素點(diǎn)個(gè)數(shù), SBP越大,系統(tǒng)可傳輸?shù)男畔⒕驮截S富。
2022-08-31 10:06:022516

光學(xué)掃描成像測(cè)量機(jī)高效精準(zhǔn)測(cè)量PCB的平面度和翹曲度

VX9700光學(xué)掃描成像測(cè)量機(jī)以光學(xué)成像測(cè)量系統(tǒng)為基礎(chǔ),非接觸式傳感器,結(jié)合高精度分析算法,可以精準(zhǔn)計(jì)算測(cè)量位的平面度和翹曲度數(shù)據(jù),且即使在多塊PCB板同時(shí)測(cè)量的情況下,也穩(wěn)定進(jìn)行。
2022-09-28 11:31:18727

光學(xué)成像技術(shù)的了解與研究

視覺(jué)是人類獲取客觀世界信息的主要途徑(據(jù)估計(jì)人類感知外界信息有80%來(lái)自視覺(jué)),但在時(shí)間、空間、靈敏度、光譜、分辨力等方面都有局限性。光學(xué)成像技術(shù)利用各種光學(xué)成像系統(tǒng)獲得客觀景物圖像,通過(guò)光信息的可視化可延伸并擴(kuò)展人眼的視覺(jué)人性。
2022-10-10 17:50:283486

基于一種集成化的元成像芯片架構(gòu)

完美光學(xué)成像是人類感知世界的終極目標(biāo)之一,但這個(gè)目標(biāo)卻從根本上受制于鏡面加工誤差與復(fù)雜環(huán)境擾動(dòng)所引起的光學(xué)像差。
2022-10-24 09:45:26640

計(jì)算光學(xué)成像技術(shù)的基本概念、內(nèi)涵和優(yōu)勢(shì)

計(jì)算光學(xué)成像,顧名思義,是把“計(jì)算”融入到光學(xué)圖像形成過(guò)程中任何一個(gè)或者多個(gè)環(huán)節(jié)的一類新型的成像技術(shù)或系統(tǒng)。光學(xué)圖像的形成與場(chǎng)景/物體的照明模式、系統(tǒng)光學(xué)傳遞函數(shù)、像感器的采樣三個(gè)因素息息相關(guān)
2022-11-17 11:23:523142

萊森光學(xué)成功試飛多旋翼無(wú)人機(jī)高光譜成像系統(tǒng)

2022年11月30日,萊森光學(xué)(深圳)有限公司的技術(shù)人員外出至東莞市大嶺山森林公園。對(duì)iSpecHyper-VM100 無(wú)人機(jī)高光譜成像系統(tǒng)進(jìn)行試飛測(cè)試。本次外出的目的是為了,驗(yàn)證
2022-12-07 11:49:23797

光學(xué)成像技術(shù):阿貝成像原理和實(shí)驗(yàn)解析

阿貝成像原理是1873年,德國(guó)科學(xué)家阿貝在研究如何提高顯微鏡分辨本領(lǐng)時(shí)提出的;原理指出,成像分為兩個(gè)步驟,第一步是相干光照明下,物光在透鏡后焦面上形成特殊的衍射光分布;第二步是衍射光繼續(xù)向前傳播,復(fù)合成像
2022-12-23 09:53:175451

計(jì)算光學(xué)成像:何來(lái),何處,何去,何從?

一個(gè)典型的光學(xué)成像系統(tǒng)主要由光源、光學(xué)鏡頭組、光探測(cè)器三部分組成。光學(xué)鏡頭將三維場(chǎng)景目標(biāo)發(fā)出或者透/反/散射的光線聚焦在表面上,探測(cè)器像素和樣品之間通過(guò)建立一種直接的一一對(duì)應(yīng)關(guān)系來(lái)獲取圖像
2023-01-13 11:23:122105

計(jì)算光學(xué)成像:突破傳統(tǒng)光學(xué)成像極限

隨著傳感器、云計(jì)算、人工智能等新一代信息技術(shù)的不斷演進(jìn),新型解決方案逐步浮出水面——計(jì)算光學(xué)成像。計(jì)算光學(xué)成像以具體應(yīng)用任務(wù)為準(zhǔn)則,通過(guò)多維度獲取或編碼光場(chǎng)信息(如角度、偏振、相位等),為傳感器設(shè)計(jì)遠(yuǎn)超人眼的感知新范式;
2023-01-15 15:13:39886

為什么跨尺度光學(xué)成像的意義至關(guān)重要呢?

光學(xué)成像系統(tǒng)獲取的信息量由光學(xué)系統(tǒng)的視場(chǎng)和分辨率決定。寬視場(chǎng)能夠覆蓋更廣的觀察范圍,高分辨率能夠獲得物體更多的細(xì)節(jié)信息。
2023-01-16 15:08:471870

我國(guó)科研團(tuán)隊(duì)合作在散射成像研究方面取得進(jìn)展

光學(xué)成像的本質(zhì)是信息的傳遞,成像系統(tǒng)則提供了信息傳遞的信道。傳統(tǒng)光學(xué)成像系統(tǒng)可以根據(jù)光路中各個(gè)部分已知的傳輸函數(shù)來(lái)計(jì)算系統(tǒng)響應(yīng),換言之,信道的結(jié)構(gòu)和特性明確可知。當(dāng)使用散射介質(zhì)替換傳統(tǒng)透鏡時(shí),仍然可以從光場(chǎng)中提取圖像
2023-02-24 11:37:23376

光學(xué)成像設(shè)計(jì)之偏振探測(cè)成像技術(shù)

降低成像過(guò)程中的干擾因素。利用線偏振和圓偏振技術(shù)來(lái)減少光在散射環(huán)境的傳播過(guò)程中產(chǎn)生的前向散射光和后向散射光的影響,從而提升目標(biāo)物體的圖像質(zhì)量。
2023-04-12 08:25:001112

機(jī)器視覺(jué)的成像系統(tǒng)綜述

機(jī)器視覺(jué)的成像系統(tǒng)的簡(jiǎn)化模型,如圖1所示。光學(xué)成像系統(tǒng)對(duì)現(xiàn)實(shí)世界中的可見(jiàn)光、紅外線、X射線等實(shí)施某種轉(zhuǎn)換T(x,y),將物理量轉(zhuǎn)換為電信號(hào),再經(jīng)圖像采集設(shè)備采樣、量化后生成數(shù)字圖像。
2023-04-11 10:22:51624

光學(xué)偏振成像技術(shù)的研究、應(yīng)用與進(jìn)展

偏振成像技術(shù)作為一種新型的光學(xué)成像技術(shù),可以實(shí)現(xiàn)抑制背景噪聲、提高探測(cè)距離、獲取目標(biāo)細(xì)節(jié)特征和識(shí)別偽裝目標(biāo)等功能。
2023-04-15 16:39:292230

智能化驅(qū)使下,中圖儀器光學(xué)3D成像測(cè)量技術(shù)的創(chuàng)新應(yīng)用

中圖儀器影像測(cè)量?jī)x、共聚焦顯微鏡、白光干涉儀基于3D光學(xué)成像測(cè)量非接觸、操作簡(jiǎn)單、速度快等優(yōu)點(diǎn),能提供常規(guī)尺寸光學(xué)測(cè)量?jī)x器、微觀尺寸光學(xué)測(cè)量?jī)x器、大尺寸光學(xué)測(cè)量?jī)x器等精密測(cè)量解決方案!
2023-04-20 17:11:44396

機(jī)器視覺(jué)成像系統(tǒng)綜述

機(jī)器視覺(jué)的成像系統(tǒng)的簡(jiǎn)化模型,如圖1所示。 光學(xué)成像系統(tǒng)對(duì)現(xiàn)實(shí)世界中的可見(jiàn)光、紅外線、X射線等實(shí)施某種轉(zhuǎn)換T(x,y),將物理量轉(zhuǎn)換為電信號(hào),再經(jīng)圖像采集設(shè)備采樣、量化后生成數(shù)字圖像。
2023-05-14 16:48:56644

基于波前編碼的擴(kuò)展景深短波紅外成像系統(tǒng)

點(diǎn)擴(kuò)散函數(shù)描述光學(xué)系統(tǒng)對(duì)點(diǎn)光源的輸出響應(yīng),理想的點(diǎn)擴(kuò)散函數(shù)近似能量集中的小支持域脈沖函數(shù)。在經(jīng)典光學(xué)理論中,光學(xué)成像過(guò)程是物空間目標(biāo)和點(diǎn)擴(kuò)散函數(shù)的卷積。
2023-05-30 18:18:12289

光學(xué)成像質(zhì)量評(píng)價(jià)

從物面上任意一點(diǎn)發(fā)出的光波,攜帶著該物點(diǎn)的信息,本來(lái)是向著所有方向發(fā)射的,但成像鏡頭都有孔徑光欄,限制了物點(diǎn)發(fā)出的光束,只接收孔徑角2u 范圍內(nèi)的光束進(jìn)入系統(tǒng)并傳遞,參與成像。超出該孔徑的光束通不過(guò)透鏡。
2023-06-07 14:34:31554

【虹科】機(jī)器視覺(jué)為醫(yī)學(xué)成像帶來(lái)成本和臨床效益(一)

從影像輔助手術(shù)到醫(yī)療診斷系統(tǒng),實(shí)時(shí)成像技術(shù)正推動(dòng)著醫(yī)療保健服務(wù)方式的根本性變更。隨著醫(yī)學(xué)成像的廣泛應(yīng)用,工程師正在尋求新的方法,從而更加經(jīng)濟(jì)有效地傳輸高帶寬視頻。之前醫(yī)學(xué)成像系統(tǒng)依賴于電信、廣播
2021-10-21 17:32:11377

捕獲“彩虹”超分辨率的位移光譜成像

基于成像的傳感技術(shù)是實(shí)現(xiàn)生物或化學(xué)方面一些重要信息可視化的主要工具。然而,由于經(jīng)典光學(xué)存在衍射極限,為了實(shí)現(xiàn)更好的成像能力,傳統(tǒng)的光學(xué)成像系統(tǒng)通常需要龐大的體積,并且價(jià)格昂貴。微型納米等離子體結(jié)構(gòu)中納米尺度上的超慢波可以改善光與物質(zhì)的相互作用,其獨(dú)特的潛力備受關(guān)注。
2023-06-20 12:35:13278

折衍射混合成像光學(xué)系統(tǒng)設(shè)計(jì)

摘要 :討論了衍射光學(xué)元件的特殊成像性質(zhì);提出了帶寬積分平均衍射效率的概念和應(yīng)用;給出了作者在國(guó)內(nèi)外完成的幾個(gè)折衍射混合成像光學(xué)系統(tǒng)的應(yīng)用實(shí)例,包括一個(gè)用衍射光學(xué)元件復(fù)消色差的長(zhǎng)焦距光學(xué)系統(tǒng)
2023-07-02 09:59:19442

基于SLM的計(jì)算散射成像(鬼成像)系統(tǒng)

概述 光學(xué)成像在理論研究和日常生活中都發(fā)揮了重要的作用。傳統(tǒng)的光學(xué)成像方式是對(duì)光場(chǎng)強(qiáng)度分布測(cè)量,是通過(guò)光場(chǎng)的一階關(guān)聯(lián)信息(強(qiáng)度與位相)來(lái)獲得物體的信息,如顯微鏡、照相機(jī)、望遠(yuǎn)鏡等。散射成像又稱
2023-08-11 11:43:30394

光學(xué)頻段碳化硅極化激元超透鏡為光學(xué)成像發(fā)展提供新思路

》在線發(fā)表。 找到一雙又一雙“火眼金睛”,不斷把微觀世界看清楚,是許多科研人員的研究目標(biāo)。基于極化激元和超構(gòu)材料構(gòu)筑的超透鏡,此前已將光學(xué)成像分辨率提升至數(shù)百納米水平,借此可直接觀測(cè)微觀物質(zhì),被廣泛應(yīng)用于生物醫(yī)
2023-08-24 09:32:55563

成像光學(xué)中的邊緣光線原理是什么

成像光學(xué)在上世紀(jì)的 60 年代就出現(xiàn)了, 1965年因?yàn)檠芯啃枰?Winston教授設(shè)計(jì)了復(fù)合拋物聚能器,這是一種新型光能收集器件。這一器件的問(wèn)世象征著非成像光學(xué)的誕生。
2023-08-29 11:00:50678

基于離軸成像光學(xué)系統(tǒng)的設(shè)計(jì)

? ? ? ? ? 針對(duì)自由曲面能提升成像光學(xué)系統(tǒng)的性能和校正像差的特點(diǎn),分析了自由曲面在離軸光學(xué)系統(tǒng)中的應(yīng)用優(yōu)勢(shì)。光學(xué)系統(tǒng)選用視場(chǎng)角為30°×11°、焦距為150 mm、F數(shù)為3的Cook-TMA
2023-09-10 09:06:32602

基于光學(xué)成像的物體三維重建技術(shù)研究

隨著計(jì)算機(jī)科學(xué)和數(shù)字成像技術(shù)的飛速發(fā)展,光學(xué)成像技術(shù)在許多領(lǐng)域中得到了廣泛應(yīng)用,其中之一便是物體三維重建。物體三維重建技術(shù)是一種通過(guò)計(jì)算機(jī)處理圖像數(shù)據(jù),獲得物體三維信息的技術(shù)。光學(xué)成像技術(shù)作為物體
2023-09-15 09:29:34493

計(jì)算光學(xué)成像如何突破傳統(tǒng)光學(xué)成像極限

傳統(tǒng)光學(xué)成像建立在幾何光學(xué)基礎(chǔ)上,借鑒人眼視覺(jué)“所見(jiàn)即所得”的原理,而忽略了諸多光學(xué)高維信息。當(dāng)前傳統(tǒng)光學(xué)成像在硬件功能、成像性能方面接近物理極限,在眾多領(lǐng)域已無(wú)法滿足應(yīng)用需求。
2023-11-17 17:08:01215

2023十大科技趨勢(shì)之一:計(jì)算光學(xué)成像

計(jì)算光學(xué)成像是一個(gè)新興多學(xué)科交叉領(lǐng)域。它以具體應(yīng)用任務(wù)為準(zhǔn)則,通過(guò)多維度獲取或編碼光場(chǎng)信息(如角度、偏振、相位等),為傳感器設(shè)計(jì)遠(yuǎn)超人眼的感知新范式;
2023-11-17 17:10:33783

新技術(shù):使用超光學(xué)器件進(jìn)行熱成像

研究人員開(kāi)發(fā)出一種新技術(shù),該技術(shù)使用超光學(xué)器件進(jìn)行熱成像。能夠提供有關(guān)成像物體的更豐富信息,可以拓寬熱成像在自主導(dǎo)航、安全、熱成像、醫(yī)學(xué)成像和遙感等領(lǐng)域的應(yīng)用。
2024-01-16 11:43:10105

一種基于擴(kuò)散模型的傅里葉單像素成像高分辨率迭代重建方法

傅里葉單像素成像(FSPI)是一種基于傅里葉分析理論的計(jì)算光學(xué)成像技術(shù)。
2024-01-24 09:43:23208

用于體內(nèi)超聲和光聲雙模顯微成像的超靈敏透明超聲換能器設(shè)計(jì)

超聲成像(USI)和光學(xué)成像(OI)傳感器因其簡(jiǎn)單、安全及高成本效益,非常適合傳感器融合應(yīng)用。
2024-02-29 09:47:54181

基于光子糾纏的自適應(yīng)光學(xué)成像技術(shù)應(yīng)用

對(duì)引導(dǎo)星的依賴給顯微鏡成像細(xì)胞和組織等不含亮點(diǎn)的樣本帶來(lái)了問(wèn)題。科學(xué)家們利用圖像處理算法開(kāi)發(fā)了無(wú)引導(dǎo)星的自適應(yīng)光學(xué)系統(tǒng),但這些系統(tǒng)可能會(huì)因結(jié)構(gòu)復(fù)雜的樣本而失效。
2024-03-11 11:29:4254

淺談超分辨光學(xué)成像

分辨光學(xué)定義及應(yīng)用 分辨光學(xué)成像特指分辨率打破了光學(xué)顯微鏡分辨率極限(200nm)的顯微鏡,技術(shù)原理主要有受激發(fā)射損耗顯微鏡技術(shù)和光激活定位顯微鏡技術(shù)。 管中亦可窺豹——受激發(fā)射損耗顯微鏡 傳統(tǒng)光學(xué)
2024-03-15 06:35:4170

已全部加載完成