熱電偶入門
托馬斯•塞貝克在1822年發(fā)現(xiàn)了熱電偶原理。熱電偶是一種簡單的溫度測量裝置,由兩種不同金屬(金屬1和金屬2)組成(圖1)。塞貝克發(fā)現(xiàn)不同的金屬將產(chǎn)生不同的、與溫度梯度有關(guān)的電勢。如果這些金屬焊接在一起構(gòu)成溫度傳感器結(jié)(TJUNC,也稱為溫度結(jié)),另一端未連接的差分結(jié)(TCOLD,作為恒溫參考端)上將呈現(xiàn)出電壓,VOUT,該電壓與焊接結(jié)的溫度成正比。從而使熱電偶輸出隨溫度變化的電壓/電荷,無需任何電壓或電流激勵。圖1. 熱電偶簡化電路
VOUT溫差(TJUNC - TCOLD)是金屬1及金屬2的金屬類型的函數(shù)。該函數(shù)在美國國家標(biāo)準(zhǔn)與技術(shù)研究院(NIST) ITS-90熱電偶數(shù)據(jù)庫[1]中嚴(yán)格定義,覆蓋了絕大多數(shù)實用金屬1和金屬2組合。利用該數(shù)據(jù)庫,可根據(jù)VOUT測量值計算相對溫度TJUNC。然而,由于熱電偶以差分方式測量TJUNC,為了確定溫度結(jié)的實測溫度,就必須知道冷端絕對溫度(單位為°C、°F或K)。所有現(xiàn)代熱電偶系統(tǒng)都利用另一絕對溫度傳感器(PRTD、硅傳感器等)精密測量冷端溫度,并進行數(shù)學(xué)補償。
圖1所示熱電偶簡化電路的溫度公式為:
式中:
Tabs = TJUNC + TCOLD (式1)
Tabs為溫度結(jié)的絕對溫度;
TJUNC為溫度結(jié)與基準(zhǔn)冷端的相對溫度;
TCOLD為冷端參考端的絕對溫度。
熱電偶的類型各種各樣,但是針對具體的工業(yè)或醫(yī)療環(huán)境可以選擇最適合的異金屬對兒。這些金屬和/或合金組合被NIST及國際電工委員會標(biāo)準(zhǔn)化,簡寫為E、J、T、K、N、B、S、R等。NIST和IEC為常見的熱電偶類型提供了熱電偶參考表[1]。
NIST和IEC還為每種熱電偶類型開發(fā)了標(biāo)準(zhǔn)數(shù)學(xué)模型。這些冪級數(shù)模型采用獨特的系數(shù)組合,每種熱電偶類型及不同溫度范圍的系數(shù)都不同[1]。
表1所示為部分常見熱電偶類型(J、K、E和S)的例子。
表1. 常見的熱電偶類型
Thermocouple Type | Positive Conductor | Negative Conductor | Temperature Range (°C) | Seebeck Coefficient at +20°C |
J | Chromel | Constantan | 0 to 760 | 51µV/°C |
K | Chromel | Alumel | -200 to +1370 | 41µV/°C |
E | Chromel | Constantan | -100 to +1000 | 62µV/°C |
S | Platinum (10% Rhodium) | Rhodium | 0 to 1750 | 7µV/°C |
J型熱電偶具有相對較高的塞貝克系數(shù)、高精度和低成本,應(yīng)用廣泛。這些熱電偶使用相對簡單的線性化算法,即可達到±0.1°C的測量精度。
K型熱電偶覆蓋的溫度范圍寬,在工業(yè)測量領(lǐng)域的應(yīng)用非常廣泛。這些熱電偶具有適中的高塞貝克系數(shù)、低成本及良好的抗氧化性。K型熱電偶的精度高達±0.1°C。
E型熱電偶的應(yīng)用沒有其它類型熱電偶普及。然而,這組熱電偶的塞貝克系數(shù)最高。E型熱電偶所需的測量分辨率低于其它類型。E型熱電偶的測量精度可達到±0.5°C,需要的線性化計算方法相對復(fù)雜。
S型熱電偶由鉑和銠組成,這對組合能夠在非常高的氧化環(huán)境下實現(xiàn)穩(wěn)定、可復(fù)現(xiàn)的測量。S型熱電偶的塞貝克系數(shù)較低,成本相對較高。S型熱電偶的測量精度可達到±1°C,需要的線性化算法相對復(fù)雜。
用戶評論
共 0 條評論