您好,歡迎來電子發(fā)燒友網(wǎng)! ,新用戶?[免費(fèi)注冊]

您的位置:電子發(fā)燒友網(wǎng)>源碼下載>數(shù)值算法/人工智能>

稀疏化非監(jiān)督分層概率自組織圖方法

大?。?/span>0.86 MB 人氣: 2017-12-21 需要積分:1

  針對基于實(shí)例的遷移學(xué)習(xí)在關(guān)聯(lián)多源異構(gòu)領(lǐng)域數(shù)據(jù)時(shí)遇到的數(shù)據(jù)顆粒度不匹配問題,以單領(lǐng)域分層概率自組織圖( HiPSOC)聚類方法為基礎(chǔ),提出一種具有遷移學(xué)習(xí)能力的稀疏化非監(jiān)督分層概率自組織圖(TSHiPSOC)方法。首先,在源領(lǐng)域和目標(biāo)領(lǐng)域分別基于概率混合多變量高斯分布生成分層自組織模型以便在多領(lǐng)域中分別提取不同粒度的表示向量,并用稀疏圖方法通過概率準(zhǔn)則控制模型增長;其次,利用最大信息系數(shù)( MIC),在具有富信息的源領(lǐng)域中尋找與目標(biāo)領(lǐng)域表示向量最相似的表示向量,并利用這些源領(lǐng)域表示向量的類別標(biāo)簽細(xì)化目標(biāo)領(lǐng)域數(shù)據(jù)分類;最后,在國際通用分類數(shù)據(jù)集20新聞組數(shù)據(jù)集和垃圾郵件檢測數(shù)據(jù)集上進(jìn)行了實(shí)驗(yàn),結(jié)果表明算法可以利用源領(lǐng)域的有用信息輔助目標(biāo)領(lǐng)域的分類問題,并使分類準(zhǔn)確率最高提高約15. 26%和9.05%;對比其他經(jīng)典遷移學(xué)習(xí)方法,通過稀疏分層可以挖掘不同顆粒度的表示向量,分類準(zhǔn)確率最高提高約4. 48%和4.13%。

非常好我支持^.^

(0) 0%

不好我反對

(0) 0%

      發(fā)表評論

      用戶評論
      評價(jià):好評中評差評

      發(fā)表評論,獲取積分! 請遵守相關(guān)規(guī)定!

      ?