我們常說(shuō),辦事情要“名正言順”,而數(shù)據(jù)領(lǐng)域的名字則是格外的多,商業(yè)分析、數(shù)據(jù)分析、數(shù)據(jù)挖掘、算法模型……經(jīng)常把大家繞暈,今天系統(tǒng)科普一下。
商業(yè)分析VS 數(shù)據(jù)分析
廣義上的數(shù)據(jù)分析,指的是“利用數(shù)據(jù)對(duì)XX問(wèn)題進(jìn)行分析”。包括了數(shù)據(jù)采集、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)清洗、數(shù)據(jù)計(jì)算、結(jié)論輸出、數(shù)據(jù)可視化等部分。大家注意到了,這里是有個(gè)空白的XX沒(méi)有填的。實(shí)際上,廣義上的數(shù)據(jù)分析是一個(gè)基礎(chǔ)技能,可以利用到很多很多領(lǐng)域。空白處可以填學(xué)術(shù)、理論、科學(xué)、醫(yī)療、教育、情感、心理……等等名詞。是滴,這個(gè)空白處也可以填“商業(yè)問(wèn)題”。如果是:利用數(shù)據(jù)分析方法進(jìn)行商業(yè)問(wèn)題的分析,那就是商業(yè)分析了。商業(yè)分析是廣義的數(shù)據(jù)分析方法的一個(gè)具體應(yīng)用場(chǎng)景。
狹義上的數(shù)據(jù)分析, 應(yīng)該叫“對(duì)企業(yè)內(nèi)部系統(tǒng)采集的數(shù)據(jù)進(jìn)行分析”。實(shí)際上,我們?cè)?a target="_blank">招聘時(shí)看到的要求懂sql,hive,python,R等軟件操作的“數(shù)據(jù)分析崗位”,指的都是狹義的數(shù)據(jù)分析。這些分析工作基于企業(yè)網(wǎng)站、APP、訂單、售后、客服、物流、財(cái)務(wù)系統(tǒng)記錄的數(shù)據(jù),進(jìn)行計(jì)算、建模、報(bào)告等工作。
內(nèi)部數(shù)據(jù)質(zhì)量不行,是個(gè)永恒的問(wèn)題,也常常成為分析的死穴。不懂?dāng)?shù)據(jù)的人往往想當(dāng)然的認(rèn)為:數(shù)據(jù)不是很多嗎,分析分析就好了呀??烧嬲鰯?shù)據(jù)工作的都知道,急躁的業(yè)務(wù)領(lǐng)導(dǎo)、投機(jī)取巧的同事、薅羊毛的用戶、落后的IT建設(shè),都會(huì)讓內(nèi)部數(shù)據(jù)看似龐大,實(shí)則一塌糊涂。常見的內(nèi)部數(shù)據(jù)的分類與問(wèn)題,簡(jiǎn)單歸納如下,大家感受一下:
商業(yè)分析不僅僅利用企業(yè)內(nèi)部系統(tǒng)數(shù)據(jù),還需要大量利用外部數(shù)據(jù)。它由四個(gè)構(gòu)成部分:行業(yè)研究、定性訪談、定量調(diào)研、內(nèi)部數(shù)據(jù)分析。因?yàn)橛绊懫髽I(yè)經(jīng)營(yíng)狀況的因素,本身就包括了宏觀環(huán)境、競(jìng)爭(zhēng)對(duì)手、內(nèi)部組織、員工能力、消費(fèi)者態(tài)度與意愿等等方面。這些因素非常重要,但不一定都能通過(guò)系統(tǒng)采集到。因此就得靠多方面的信息采集來(lái)滿足需求。具體每個(gè)部分的采集方式、用途,如下表所示:
真正進(jìn)行商業(yè)分析,需要有綜合性技能和多方面獲取數(shù)據(jù)的能力。很多企業(yè)拿著做內(nèi)部數(shù)據(jù)分析的要求招商業(yè)分析師,結(jié)果招來(lái)的人只會(huì)跑數(shù)據(jù),沒(méi)有解決真實(shí)問(wèn)題的能力。寫代碼的小哥每天對(duì)著銷售曲線發(fā)呆,冥思苦想不得其解。其核心癥結(jié)就在這里:本身商業(yè)分析就不是敲兩行代碼就能完事的。至少要有行業(yè)研究-市場(chǎng)調(diào)查-內(nèi)部訪談-內(nèi)部數(shù)據(jù)分析四部分相互配合,不是200行代碼就能讓阿爾法狗子開口說(shuō)人話:貴公司的問(wèn)題是XXXX。200萬(wàn)行代碼都不行。
更何況,很多企業(yè)對(duì)數(shù)據(jù)的重視程度遠(yuǎn)遠(yuǎn)不夠。
有新政策出臺(tái)也不知會(huì);
外部信息系統(tǒng)采集、共享機(jī)制不存在;
內(nèi)部做事情的背景、現(xiàn)狀、目標(biāo)啥都不交代;
不給做分析的同學(xué)走訪一線,了解實(shí)際的機(jī)會(huì);
遇到問(wèn)題就知道甩給分析:“你建個(gè)模型分析分析”
私下里搞小動(dòng)作,做分析的同學(xué)甚至是最后一個(gè)知道企業(yè)發(fā)生什么事的人
這就讓做分析的同學(xué)們無(wú)米下鍋了。就更難通過(guò)分析產(chǎn)出效益了。
商業(yè)分析VS 算法模型
拜Alpha Go所賜,現(xiàn)在人人都知道人工智能很厲害。阿爾法狗子一聲汪汪,咬哭了柯潔,也讓人們產(chǎn)生了無(wú)數(shù)對(duì)人工智能、算法模型的幻想。實(shí)際上算法模型最大、最成功、最多精力去做的內(nèi)容,和數(shù)據(jù)分析沒(méi)啥關(guān)系。算法模型目前比較成熟應(yīng)用的領(lǐng)域,在于圖像識(shí)別、語(yǔ)義識(shí)別、路線規(guī)劃等方面,具體應(yīng)用在安防、風(fēng)控、物流、駕駛等領(lǐng)域,是基礎(chǔ)的工業(yè)級(jí)應(yīng)用。
在商業(yè)領(lǐng)域算法的用處相當(dāng)有限。因?yàn)楸旧砥髽I(yè)經(jīng)營(yíng)靠的就不一定是精細(xì)的計(jì)算,政策大勢(shì)、老板的資源、員工創(chuàng)新、創(chuàng)意、創(chuàng)造能力,這些都很難用數(shù)據(jù)量化。換句話說(shuō):如果給定圍棋的規(guī)則讓算法去學(xué)習(xí),算法可以打敗最一流的高手;但在商業(yè)領(lǐng)域不是下圍棋,有可能明年下棋的規(guī)則都變成在圍棋盤上擺車馬炮……別說(shuō)阿爾法狗了,阿爾法噴火大恐龍都搞不掂。
因此,在商業(yè)領(lǐng)域算法往往應(yīng)用在特定場(chǎng)景上。
第一類常用的是直接針對(duì)用戶場(chǎng)景的算法。具體場(chǎng)景往往有以下特點(diǎn):個(gè)人決策、封閉信息、一對(duì)一溝通、用戶決策容易被營(yíng)銷策略影響、數(shù)據(jù)指標(biāo)多需要壓縮、創(chuàng)意影響較少。比如常見的:風(fēng)控。都是個(gè)人申請(qǐng)資料,金融機(jī)構(gòu)審核。如果這個(gè)人信用不好,我們也沒(méi)必要幫助他好,拒絕他就是了。設(shè)計(jì)信用的指標(biāo)很多,單靠一兩個(gè)指標(biāo)很難判斷,因此可以建模(最常用的是邏輯回歸)來(lái)區(qū)分用戶風(fēng)險(xiǎn)等級(jí)。類似的如推薦算法或者大數(shù)據(jù)殺熟,往往在APP里應(yīng)用多,欺負(fù)的就是一對(duì)一的封閉場(chǎng)景溝通。如果真在實(shí)體店搞這一套,估計(jì)早就被客人告到工商局,或者干脆砸了招牌走人。
第二類常用的是預(yù)測(cè)算法,包括基于時(shí)間序列和因果關(guān)系預(yù)測(cè)兩類。商業(yè)分析很需要對(duì)未來(lái)發(fā)展趨勢(shì)做預(yù)測(cè),因此需要算法輔助。常見的用法、優(yōu)缺點(diǎn)如下表所示
第三類是用來(lái)降維的算法。包括因子-聚類分析、AHP、主成份分析等。往往是評(píng)估一個(gè)問(wèn)題,考慮指標(biāo)太多的時(shí)候,需要做降維處理,壓縮指標(biāo)方便評(píng)分。常用于評(píng)估類問(wèn)題,比如項(xiàng)目、新產(chǎn)品、品牌評(píng)估等等。
綜上,可以看到算法模型在商業(yè)分析中是非常有用的,可它本身不能替代商業(yè)分析,更不是一個(gè)問(wèn)題思考不清楚了,就甩給做分析的同學(xué):“人工智能好厲害,快人工智能分析一下為什么我們業(yè)績(jī)做不起來(lái)”。業(yè)績(jī)是做出來(lái)的,不是算出來(lái)的。更多的商業(yè)問(wèn)題是和人的主觀能動(dòng)性有關(guān),因此脫離人的因素去指望算法,最后就淪為數(shù)字游戲。
以上就是商業(yè)分析、數(shù)據(jù)分析、算法模型的關(guān)系與區(qū)別。用一句話概括,可以說(shuō)是:商業(yè)分析是數(shù)據(jù)分析方法在商業(yè)問(wèn)題的具體應(yīng)用,算法模型是一個(gè)有效解決特定商業(yè)分析問(wèn)題的工具。
-
算法
+關(guān)注
關(guān)注
23文章
4587瀏覽量
92501 -
人工智能
+關(guān)注
關(guān)注
1789文章
46652瀏覽量
237070
原文標(biāo)題:商業(yè)分析與數(shù)據(jù)分析、算法模型的關(guān)系與區(qū)別
文章出處:【微信號(hào):AI_shequ,微信公眾號(hào):人工智能愛好者社區(qū)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論