0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于機器視覺的織物疵點自動檢測技術(shù)分析

QQ475400555 ? 來源:機器視覺沙龍 ? 2024-02-19 15:44 ? 次閱讀

紡織業(yè)在是中國最大的日常使用及消耗相關(guān)的產(chǎn)業(yè)之一,且勞動工人多,生產(chǎn)量和對外出口量很大,紡織業(yè)的發(fā)展影響著中國經(jīng)濟、社會就業(yè)問題。而織物產(chǎn)品的質(zhì)量直接影響產(chǎn)品的價格,進一步影響著整個行業(yè)的發(fā)展,因此紡織品質(zhì)量檢驗是織物產(chǎn)業(yè)鏈中必不可少且至關(guān)重要的環(huán)節(jié)之一。

織物缺陷檢測是紡織品檢驗中最重要的檢驗項目之一,其主要目的是為了避免織物缺陷影響布匹質(zhì)量,進而極大影響紡織品的價值和銷售。

長期以來,布匹的質(zhì)量監(jiān)測都是由人工肉眼觀察完成,按照工作人員自己的經(jīng)驗對織物質(zhì)量進行評判,這種方法明顯具有許多缺點。首先,機械化程度太低,人工驗布的速度非常慢;其次,人工視覺檢測的評價方法因受檢測人員的主觀因素的影響不夠客觀一致,因而經(jīng)常會產(chǎn)生誤檢和漏檢。

目前,基于圖像的織物疵點自動檢測技術(shù)已成為了該領(lǐng)域近年來的的研究熱點,其代替人工織物疵點檢測的研究算法也逐漸成為可能,主流方法一般分為兩大類,一是基于傳統(tǒng)圖像處理的織物缺陷檢測方法,二是基于深度學(xué)習(xí)算法的織物缺陷檢測定位方法

傳統(tǒng)的目標檢測方法主要可以表示為:特征提取-識別-定位, 將特征提取和目標檢測分成兩部分完成。

基于深度學(xué)習(xí)的目標檢測主要可以表示為:圖像的深度特征提取-基于深度神經(jīng)網(wǎng)絡(luò)的目標定位, 其中主要用到卷積神經(jīng)網(wǎng)絡(luò)。

1

織物表面缺陷檢測分析

正常情況下,織物表面的每一個異常部分都被認為是織物的缺陷。

在實踐中, 織物的缺陷一般是由機器故障、紗線問題和油污等造成的,如斷經(jīng)緯疵、粗細經(jīng)緯疵、 破損疵、 起球疵、 破洞疵、 污漬疵等。然而,隨著織物圖案越來越復(fù)雜,相應(yīng)的織物缺陷類型也越來越多,并隨著紡織技術(shù)的提高, 缺陷的大小范圍越來越小。在質(zhì)量標準方面,一些典型的織物缺陷如圖所示。

95b14eec-cefa-11ee-a297-92fbcf53809c.png

各類模式織物表面的疵點圖像

由紡線到成品織物,需經(jīng)過紗線紡織、裁剪、圖案印染等流程,而且在每個流程中,又需要很多的程序才能完成。在各環(huán)節(jié)的施工中,如果設(shè)定條件不合適, 工作人員操作不規(guī)范,機器出現(xiàn)的硬件問題故障等,都有可能導(dǎo)致最后的紡織品發(fā)生表面存在缺陷。從理論上說,加工流程越多,則缺陷問題的機率就越高。

95c35c2c-cefa-11ee-a297-92fbcf53809c.png

最常見的疵點類型及形成原因

隨著科技水平的進步,紡織布匹的技術(shù)不斷隨之發(fā)展,疵點的面積區(qū)域必將越來越小,這無疑給織物疵點檢測帶來了更大的難題。疵點部分過小,之前的方法很難將其檢測出來。

95c7e148-cefa-11ee-a297-92fbcf53809c.png

檢測存在困難的織物疵點類型

2

圖像采集與數(shù)據(jù)庫構(gòu)建

基于深度學(xué)習(xí)的織物疵點檢測方法相比傳統(tǒng)的方法,雖然具有檢測速率快,誤檢率低,檢測精度高等優(yōu)點, 但這些方法是依賴于大量的訓(xùn)練數(shù)據(jù)庫基礎(chǔ)之上的。只有在訓(xùn)練階段包含了盡量多的織物疵點圖像,盡可能的把每種疵點的類型都輸入訓(xùn)練網(wǎng)絡(luò),這樣對于網(wǎng)絡(luò)模型來說,才能反復(fù)的熟悉疵點的“模樣”,即獲得疵點位置的特征信息,從而記住疵點的特征信息,以在以后的檢測過程中可以更好更快更準的檢測到疵點的位置并標識。

首先搭建由光源、 鏡頭、相機、 圖像處理卡及執(zhí)行機構(gòu)組成的織物圖像采集系統(tǒng),然后基于本系統(tǒng),采集破洞、油污、起毛不均、漏針、撐痕、粗節(jié)等一定規(guī)模的織物疵點圖像,并通過轉(zhuǎn)置、 高斯濾波、圖像增強等操作擴充織物圖像,構(gòu)建了織物圖像庫,為后續(xù)深度學(xué)習(xí)提供了樣本支撐。

95dbfd7c-cefa-11ee-a297-92fbcf53809c.png

織物圖像采集系統(tǒng)整體結(jié)構(gòu)圖

相機選擇

工業(yè)相機是圖像采集系統(tǒng)中的一個關(guān)鍵組成部分,它的好壞字節(jié)影響后續(xù)所有工作,其最終目的是得到圖像數(shù)字信號。相機的選擇,是必不可少的環(huán)節(jié)之一,相機的選擇不僅直接影響所采集到的圖像質(zhì)量, 同時也與整個系統(tǒng)后續(xù)的運行模式直接關(guān)聯(lián)。

95e1388c-cefa-11ee-a297-92fbcf53809c.png

鏡頭選擇

鏡頭選擇

和工業(yè)相機一樣, 是圖像采集系統(tǒng)中非常重要的的器件之一, 直接影響圖片質(zhì)量的好壞, 影響后續(xù)處理結(jié)果的質(zhì)量和效果。同樣的, 根據(jù)不同標準光學(xué)鏡頭可以分成不同的類, 鏡頭擺放實物圖如圖所示。

光源的選擇

也是圖像采集系統(tǒng)中重要的組成部分,一般光的來源在日光燈和LED 燈中選擇,從不同的性能對兩種類型的光源進行比較。而在使用織物圖像采集系統(tǒng)采集圖像的過程中, 需要長時間進行圖像采集, 同時必須保證光的穩(wěn)定性等其他原因,相比于日光燈, LED 燈更適合于圖像采集系統(tǒng)的應(yīng)用。

9615c200-cefa-11ee-a297-92fbcf53809c.png

發(fā)射光源種類確定了,接下來就是燈的位置擺放問題,光源的位置也至關(guān)重要,其可以直接影響拍出來圖片的質(zhì)量,更直接影響疵點部位與正常部位的差別。一般有反射和投射兩種給光方式,反射既是在從布匹的斜上方投射光源,使其通過反射到相機,完成圖像拍攝;另外一種透射,是在布匹的下方投射光源,使光線穿過布匹再投射到相機,完成圖簽拍攝,光源的安裝方式對應(yīng)的采集圖像如下圖所示。

9622a880-cefa-11ee-a297-92fbcf53809c.png

963b5308-cefa-11ee-a297-92fbcf53809c.png

不同光源照射的效果對比圖

數(shù)據(jù)庫構(gòu)建

TILDA 織物圖像數(shù)據(jù)庫包含多種類型背景紋理的織物圖像,從中選擇了數(shù)據(jù)相對稍大的平紋背景的織物圖像,包含 185 張疵點圖像,但該圖像數(shù)據(jù)存在很大的問題:雖然圖片背景是均勻的,但是在沒有疵點的正常背景下,織物紋理不夠清晰,紋理空間不均勻,存在一些沒有瑕疵,但是紋理和灰度值與整體正常背景不同的情況。

96523960-cefa-11ee-a297-92fbcf53809c.png

TILDA 織物圖像庫部分疵點圖像

3

織物缺陷圖像識別算法研究

由于織物紋理復(fù)雜性, 織物疵點檢測是一項具有挑戰(zhàn)性的工作。傳統(tǒng)的檢測算法不能很好的做到實時性檢測的同時保持高檢測率。卷積神經(jīng)網(wǎng)絡(luò)技術(shù)的出現(xiàn)為這一目標提供了很好的解決方案。

基于 SSD 神經(jīng)網(wǎng)絡(luò)的織物疵點檢測定位方法:

步驟一:將數(shù)據(jù)集的 80% 的部分作為訓(xùn)練集和驗證集,再將訓(xùn)練集占其中80% ,驗證集占 20% ,剩余 20% 的部分作為測試集,得到最終的實驗結(jié)果。

96754d7e-cefa-11ee-a297-92fbcf53809c.png

步驟二:將待檢測的織物圖像輸入到步驟一訓(xùn)練好的織物檢測模型,對織物圖像進行特征提取,選取出多個可能是疵點目標的候選框。

步驟三:基于設(shè)定好的判別閾值對步驟二中的候選框進行判別得到最終的疵點目標,利用疵點目標所在候選框的交并比閾值選擇疵點目標框,存儲疵點的位置坐標信息并輸出疵點目標框。

這個算法對平紋織物和模式織物均具有很好的自適應(yīng)性及檢測性能, 擴大了適用范圍, 檢測精度高,有效解決人工檢測誤差大的問題,模型易訓(xùn)練,操作簡單。

967d5578-cefa-11ee-a297-92fbcf53809c.png

織物疵點圖像檢測結(jié)果

隨著深度學(xué)習(xí)技術(shù)飛速發(fā)展, 以及計算機等硬件水平的不斷提升, 卷積神經(jīng)網(wǎng)絡(luò)在工業(yè)現(xiàn)場的應(yīng)用將隨之不斷擴大, 織物表面疵點檢測作為工業(yè)表面檢測的代表性應(yīng)用產(chǎn)業(yè), 其應(yīng)用發(fā)展將影響著整個工業(yè)領(lǐng)域。




審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 高斯濾波
    +關(guān)注

    關(guān)注

    0

    文章

    17

    瀏覽量

    8056
  • 機器視覺
    +關(guān)注

    關(guān)注

    161

    文章

    4321

    瀏覽量

    119999
  • 圖像識別
    +關(guān)注

    關(guān)注

    9

    文章

    518

    瀏覽量

    38212
  • 圖像采集系統(tǒng)
    +關(guān)注

    關(guān)注

    0

    文章

    28

    瀏覽量

    12462
  • 卷積神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    4

    文章

    359

    瀏覽量

    11831

原文標題:基于機器視覺的織物缺陷圖像識別方法分析

文章出處:【微信號:機器視覺沙龍,微信公眾號:機器視覺沙龍】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    完整的傳感器與自動檢測技術(shù)演示教程 PPT下載

    ``傳感器與自動檢測技術(shù)演示教程 PPT下載628頁 17M 傳感器與自動檢測技術(shù)演示教程.rar``
    發(fā)表于 10-30 09:17

    請問電路板的自動檢測技術(shù)有哪些?

    請問電路板的自動檢測技術(shù)有哪些?
    發(fā)表于 04-22 06:04

    自然圖像中的對象自動檢測和提取

    引入基于例子的摳圖模型,實現(xiàn)對自然圖像的自動訓(xùn)練和檢測,采用視覺單詞的層次空間直方圖改進特征包分類檢測技術(shù),提高
    發(fā)表于 04-01 09:11 ?22次下載

    自動檢測技術(shù)精品課程

    自動檢測技術(shù)精品課程
    發(fā)表于 05-19 08:25 ?0次下載

    基于圖像距離差的織物疵點檢測算法

    本文將機器視覺與數(shù)字圖像處理技術(shù)引入到織物疵點檢測中,提出了一種織物
    發(fā)表于 05-27 13:12 ?17次下載

    自動檢測技術(shù)課件

    自動檢測技術(shù)》是自動化專業(yè)一門專業(yè)基礎(chǔ)課,是一門必選課,它是后續(xù)課程的重要基礎(chǔ),主要講述工業(yè)參數(shù)的自動檢測技術(shù)。本電子教案為PPT課件。本
    發(fā)表于 06-14 19:44 ?0次下載

    雷達故障自動檢測系統(tǒng)

    本文介紹了雷達故障自動檢測系統(tǒng)設(shè)計。對雷達故障自動檢測系統(tǒng)提出了總體設(shè)計任務(wù)和目標、構(gòu)成、功能、性能、技術(shù)指標。對雷達自動檢測系統(tǒng)硬件設(shè)計、軟件需求
    發(fā)表于 07-15 10:41 ?26次下載

    機器視覺的彈簧自動檢測系統(tǒng)模塊及組成

    基于機器視覺技術(shù),設(shè)計出一套高效、可靠的彈簧自動檢測系統(tǒng),使之能夠代替操作人員繁瑣的勞動。該系統(tǒng)在實現(xiàn)準確識別缺陷與精確測量尺寸的同時,還應(yīng)滿足實時性、可靠性、便于維護等要求。
    發(fā)表于 11-17 02:01 ?2926次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>視覺</b>的彈簧<b class='flag-5'>自動檢測</b>系統(tǒng)模塊及組成

    人工檢測機器視覺自動檢測的主要區(qū)別

    機器視覺優(yōu)勢:機器視覺系統(tǒng)具有高效率、高度自動化的特點,可以實現(xiàn)很高的分辨率精度與速度。機器
    的頭像 發(fā)表于 06-28 11:49 ?4868次閱讀

    關(guān)于視覺自動檢測的三種解決方案的簡單介紹

    隨著人工智能技術(shù)視覺檢測行業(yè)中的發(fā)展取得突破,視覺自動檢測作為一種新興的技術(shù)領(lǐng)域,如何與復(fù)雜性
    發(fā)表于 10-28 11:50 ?1997次閱讀

    織物瑕疵自動視覺檢測設(shè)備的工作流程介紹

    織物疵點自動檢測設(shè)備在紡織工業(yè)中的應(yīng)用之一。在織物的織造或坯織物檢驗、印染加工等工序?qū)?b class='flag-5'>織物
    發(fā)表于 08-26 15:00 ?979次閱讀

    基于圖像的織物疵點自動檢測技術(shù)

    目前,基于圖像的織物疵點自動檢測技術(shù)已成為了該領(lǐng)域近年來的的研究熱點,其代替人工織物疵點檢測的研
    的頭像 發(fā)表于 08-17 11:36 ?1639次閱讀

    基于SSD的織物疵點檢測系統(tǒng)

    織物疵點圖像檢測結(jié)果 隨著深度學(xué)習(xí)技術(shù)飛速發(fā)展, 以及計算機等硬件水平的不斷提升, 卷積神經(jīng)網(wǎng)絡(luò)在工業(yè)現(xiàn)場的應(yīng)用將隨之不斷擴大, 織物
    的頭像 發(fā)表于 11-21 09:44 ?1851次閱讀

    人工檢測機器視覺自動檢測的區(qū)別分析

    機器視覺系統(tǒng)具有高效率、高度自動化的特點,可以實現(xiàn)很高的分辨率精度與速度。機器視覺系統(tǒng)與被檢測
    發(fā)表于 12-26 10:33 ?1154次閱讀

    機器視覺織物缺陷圖像識別中的應(yīng)用與分析

    基于圖像的織物疵點自動檢測技術(shù)已成為了該領(lǐng)域近年來的的研究熱點,其代替人工織物疵點檢測的研究算法
    發(fā)表于 02-20 14:24 ?481次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>視覺</b>在<b class='flag-5'>織物</b>缺陷圖像識別中的應(yīng)用與<b class='flag-5'>分析</b>