0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

AI芯片什么是AI芯片的架構(gòu)、分類及關(guān)鍵技術(shù)概述

h1654155973.6121 ? 來(lái)源:未知 ? 2019-01-05 09:15 ? 次閱讀

人工智能芯片目前有兩種發(fā)展路徑:一種是延續(xù)傳統(tǒng)計(jì)算架構(gòu),加速硬件計(jì)算能力,主要以 3 種類型的芯片為代表,即GPU、 FPGAASIC,但CPU依舊發(fā)揮著不可替代的作用;另一種是顛覆經(jīng)典的馮·諾依曼計(jì)算架構(gòu),采用類腦神經(jīng)結(jié)構(gòu)來(lái)提升計(jì)算能力,以IBM TrueNorth芯片為代表。

傳統(tǒng) CPU

計(jì)算機(jī)工業(yè)從1960年代早期開始使用CPU這個(gè)術(shù)語(yǔ)。迄今為止,CPU從形態(tài)、設(shè)計(jì)到實(shí)現(xiàn)都已發(fā)生了巨大的變化,但是其基本工作原理卻一直沒有大的改變。 通常 CPU 由控制器和運(yùn)算器這兩個(gè)主要部件組成。 傳統(tǒng)的 CPU 內(nèi)部結(jié)構(gòu)圖如圖所示:

傳統(tǒng)CPU內(nèi)部結(jié)構(gòu)圖(ALU計(jì)算模塊)

從圖中我們可以看到:實(shí)質(zhì)上僅單獨(dú)的ALU模塊(邏輯運(yùn)算單元)是用來(lái)完成數(shù)據(jù)計(jì)算的,其他各個(gè)模塊的存在都是為了保證指令能夠一條接一條的有序執(zhí)行。這種通用性結(jié)構(gòu)對(duì)于傳統(tǒng)的編程計(jì)算模式非常適合,同時(shí)可以通過(guò)提升CPU主頻(提升單位時(shí)間內(nèi)執(zhí)行指令的條數(shù))來(lái)提升計(jì)算速度。 但對(duì)于深度學(xué)習(xí)中的并不需要太多的程序指令、 卻需要海量數(shù)據(jù)運(yùn)算的計(jì)算需求, 這種結(jié)構(gòu)就顯得有些力不從心。尤其是在功耗限制下, 無(wú)法通過(guò)無(wú)限制的提升 CPU 和內(nèi)存的工作頻率來(lái)加快指令執(zhí)行速度, 這種情況導(dǎo)致 CPU 系統(tǒng)的發(fā)展遇到不可逾越的瓶頸。

并行加速計(jì)算的GPU

GPU 作為最早從事并行加速計(jì)算的處理器,相比 CPU 速度快, 同時(shí)比其他加速器芯片編程靈活簡(jiǎn)單。

傳統(tǒng)的 CPU 之所以不適合人工智能算法的執(zhí)行,主要原因在于其計(jì)算指令遵循串行執(zhí)行的方式,沒能發(fā)揮出芯片的全部潛力。與之不同的是, GPU 具有高并行結(jié)構(gòu),在處理圖形數(shù)據(jù)和復(fù)雜算法方面擁有比 CPU 更高的效率。對(duì)比 GPU 和 CPU 在結(jié)構(gòu)上的差異, CPU大部分面積為控制器和寄存器,而 GPU 擁有更ALU(邏輯運(yùn)算單元)用于數(shù)據(jù)處理,這樣的結(jié)構(gòu)適合對(duì)密集型數(shù)據(jù)進(jìn)行并行處理, CPU 與 GPU 的結(jié)構(gòu)對(duì)比如圖 所示。

CPU及GPU結(jié)構(gòu)對(duì)比圖

程序在 GPU系統(tǒng)上的運(yùn)行速度相較于單核 CPU往往提升幾十倍乃至上千倍。隨著英偉達(dá)AMD公司不斷推進(jìn)其對(duì) GPU 大規(guī)模并行架構(gòu)的支持,面向通用計(jì)算的GPU(即GPGPU,通用計(jì)算圖形處理器)已成為加速可并行應(yīng)用程序的重要手段,GPU 的發(fā)展歷程可分為 3 個(gè)階段:

第一代GPU(1999年以前),部分功能從CPU分離 , 實(shí)現(xiàn)硬件加速 , 以GE(GEOMETRY ENGINE)為代表,只能起到 3D 圖像處理的加速作用,不具有軟件編程特性。

第二代 GPU(1999-2005 年), 實(shí)現(xiàn)進(jìn)一步的硬件加速和有限的編程性。 1999年,英偉達(dá)發(fā)布了“專為執(zhí)行復(fù)雜的數(shù)學(xué)和幾何計(jì)算的” GeForce256 圖像處理芯片,將更多的晶體管用作執(zhí)行單元, 而不是像 CPU 那樣用作復(fù)雜的控制單元和緩存,將(TRANSFORM AND LIGHTING)等功能從 CPU 分離出來(lái),實(shí)現(xiàn)了快速變換,這成為 GPU 真正出現(xiàn)的標(biāo)志。之后幾年, GPU 技術(shù)快速發(fā)展,運(yùn)算速度迅速超過(guò) CPU。 2001年英偉達(dá)和ATI 分別推出的GEFORCE3和RADEON 8500,圖形硬件的流水線被定義為流處理器,出現(xiàn)了頂點(diǎn)級(jí)可編程性,同時(shí)像素級(jí)也具有有限的編程性,但 GPU 的整體編程性仍然比較有限。

第三代 GPU(2006年以后), GPU實(shí)現(xiàn)方便的編程環(huán)境創(chuàng)建, 可以直接編寫程序。 2006年英偉達(dá)與ATI分別推出了CUDA (Compute United Device Architecture,計(jì)算統(tǒng)一設(shè)備架構(gòu))編程環(huán)境和CTM(CLOSE TO THE METAL)編程環(huán)境, 使得 GPU 打破圖形語(yǔ)言的局限成為真正的并行數(shù)據(jù)處理超級(jí)加速器。

2008年,蘋果公司提出一個(gè)通用的并行計(jì)算編程平臺(tái) OPENCL(開放運(yùn)算語(yǔ)言),與CUDA綁定在英偉達(dá)的顯卡上不同,OPENCL 和具體的計(jì)算設(shè)備無(wú)關(guān)。

GPU芯片的發(fā)展階段

目前, GPU 已經(jīng)發(fā)展到較為成熟的階段。谷歌、 FACEBOOK、微軟、 Twtter和百度等公司都在使用GPU 分析圖片、視頻音頻文件,以改進(jìn)搜索和圖像標(biāo)簽等應(yīng)用功能。此外,很多汽車生產(chǎn)商也在使用GPU芯片發(fā)展無(wú)人駕駛。 不僅如此, GPU也被應(yīng)用于VR/AR 相關(guān)的產(chǎn)業(yè)。

但是 GPU也有一定的局限性。 深度學(xué)習(xí)算法分為訓(xùn)練和推斷兩部分, GPU 平臺(tái)在算法訓(xùn)練上非常高效。但在推斷中對(duì)于單項(xiàng)輸入進(jìn)行處理的時(shí)候,并行計(jì)算的優(yōu)勢(shì)不能完全發(fā)揮出來(lái)。

半定制化的FPGA

FPGA 是在PAL、 GAL、 CPLD等可編程器件基礎(chǔ)上進(jìn)一步發(fā)展的產(chǎn)物。用戶可以通過(guò)燒入 FPGA 配置文件來(lái)定義這些門電路以及存儲(chǔ)器之間的連線。這種燒入不是一次性的,比如用戶可以把 FPGA 配置成一個(gè)微控制器 MCU,使用完畢后可以編輯配置文件把同一個(gè)FPGA 配置成一個(gè)音頻編解碼器。因此, 它既解決了定制電路靈活性的不足,又克服了原有可編程器件門電路數(shù)有限的缺點(diǎn)。

FPGA可同時(shí)進(jìn)行數(shù)據(jù)并行和任務(wù)并行計(jì)算,在處理特定應(yīng)用時(shí)有更加明顯的效率提升。對(duì)于某個(gè)特定運(yùn)算,通用 CPU可能需要多個(gè)時(shí)鐘周期,而 FPGA 可以通過(guò)編程重組電路,直接生成專用電路,僅消耗少量甚至一次時(shí)鐘周期就可完成運(yùn)算。

此外,由于 FPGA的靈活性,很多使用通用處理器或 ASIC難以實(shí)現(xiàn)的底層硬件控制操作技術(shù), 利用 FPGA 可以很方便的實(shí)現(xiàn)。這個(gè)特性為算法的功能實(shí)現(xiàn)和優(yōu)化留出了更大空間。同時(shí)FPGA 一次性成本(光刻掩模制作成本)遠(yuǎn)低于ASIC,在芯片需求還未成規(guī)模、深度學(xué)習(xí)算法暫未穩(wěn)定, 需要不斷迭代改進(jìn)的情況下,利用 FPGA 芯片具備可重構(gòu)的特性來(lái)實(shí)現(xiàn)半定制的人工智能芯片是最佳選擇之一。

功耗方面,從體系結(jié)構(gòu)而言, FPGA 也具有天生的優(yōu)勢(shì)。傳統(tǒng)的馮氏結(jié)構(gòu)中,執(zhí)行單元(如 CPU 核)執(zhí)行任意指令,都需要有指令存儲(chǔ)器、譯碼器、各種指令的運(yùn)算器及分支跳轉(zhuǎn)處理邏輯參與運(yùn)行, 而FPGA每個(gè)邏輯單元的功能在重編程(即燒入)時(shí)就已經(jīng)確定,不需要指令,無(wú)需共享內(nèi)存,從而可以極大的降低單位執(zhí)行的功耗,提高整體的能耗比。

由于 FPGA 具備靈活快速的特點(diǎn), 因此在眾多領(lǐng)域都有替代ASIC 的趨勢(shì)。 FPGA 在人工智能領(lǐng)域的應(yīng)用如圖所示。

FPGA 在人工智能領(lǐng)域的應(yīng)用

全定制化的ASIC

目前以深度學(xué)習(xí)為代表的人工智能計(jì)算需求,主要采用GPU、FPGA等已有的適合并行計(jì)算的通用芯片來(lái)實(shí)現(xiàn)加速。在產(chǎn)業(yè)應(yīng)用沒有大規(guī)模興起之時(shí),使用這類已有的通用芯片可以避免專門研發(fā)定制芯片(ASIC)的高投入和高風(fēng)險(xiǎn)。但是,由于這類通用芯片設(shè)計(jì)初衷并非專門針對(duì)深度學(xué)習(xí),因而天然存在性能、 功耗等方面的局限性。隨著人工智能應(yīng)用規(guī)模的擴(kuò)大,這類問(wèn)題日益突顯。

GPU作為圖像處理器, 設(shè)計(jì)初衷是為了應(yīng)對(duì)圖像處理中的大規(guī)模并行計(jì)算。因此,在應(yīng)用于深度學(xué)習(xí)算法時(shí),有三個(gè)方面的局限性:

第一:應(yīng)用過(guò)程中無(wú)法充分發(fā)揮并行計(jì)算優(yōu)勢(shì)。深度學(xué)習(xí)包含訓(xùn)練和推斷兩個(gè)計(jì)算環(huán)節(jié), GPU 在深度學(xué)習(xí)算法訓(xùn)練上非常高效, 但對(duì)于單一輸入進(jìn)行推斷的場(chǎng)合, 并行度的優(yōu)勢(shì)不能完全發(fā)揮。

第二:無(wú)法靈活配置硬件結(jié)構(gòu)。GPU 采用 SIMT 計(jì)算模式, 硬件結(jié)構(gòu)相對(duì)固定。 目前深度學(xué)習(xí)算法還未完全穩(wěn)定,若深度學(xué)習(xí)算法發(fā)生大的變化, GPU 無(wú)法像 FPGA 一樣可以靈活的配制硬件結(jié)構(gòu)。

第三:運(yùn)行深度學(xué)習(xí)算法能效低于FPGA。

盡管 FPGA 倍受看好,甚至新一代百度大腦也是基于 FPGA 平臺(tái)研發(fā),但其畢竟不是專門為了適用深度學(xué)習(xí)算法而研發(fā),實(shí)際應(yīng)用中也存在諸多局限:

第一:基本單元的計(jì)算能力有限。為了實(shí)現(xiàn)可重構(gòu)特性, FPGA 內(nèi)部有大量極細(xì)粒度的基本單元,但是每個(gè)單元的計(jì)算能力(主要依靠 LUT 查找表)都遠(yuǎn)遠(yuǎn)低于 CPU 和 GPU 中的 ALU 模塊。

第二:計(jì)算資源占比相對(duì)較低。為實(shí)現(xiàn)可重構(gòu)特性, FPGA 內(nèi)部大量資源被用于可配置的片上路由與連線。

第三:速度和功耗相對(duì)專用定制芯片(ASIC)仍然存在不小差距。

第四,:FPGA 價(jià)格較為昂貴。在規(guī)模放量的情況下單塊 FPGA 的成本要遠(yuǎn)高于專用定制芯片。

因此,隨著人工智能算法和應(yīng)用技術(shù)的日益發(fā)展,以及人工智能專用芯片 ASIC產(chǎn)業(yè)環(huán)境的逐漸成熟, 全定制化人工智能 ASIC也逐步體現(xiàn)出自身的優(yōu)勢(shì),從事此類芯片研發(fā)與應(yīng)用的國(guó)內(nèi)外比較有代表性的公司如圖所示。

人工智能專用芯片研發(fā)情況一覽

深度學(xué)習(xí)算法穩(wěn)定后, AI 芯片可采用ASIC設(shè)計(jì)方法進(jìn)行全定制, 使性能、功耗和面積等指標(biāo)面向深度學(xué)習(xí)算法做到最優(yōu)。

類腦芯片

類腦芯片不采用經(jīng)典的馮·諾依曼架構(gòu), 而是基于神經(jīng)形態(tài)架構(gòu)設(shè)計(jì),以IBM Truenorth為代表。IBM 研究人員將存儲(chǔ)單元作為突觸、計(jì)算單元作為神經(jīng)元、傳輸單元作為軸突搭建了神經(jīng)芯片的原型。

目前, Truenorth用三星 28nm功耗工藝技術(shù),由54億個(gè)晶體管組成的芯片構(gòu)成的片上網(wǎng)絡(luò)有4096個(gè)神經(jīng)突觸核心,實(shí)時(shí)作業(yè)功耗僅為70mW。由于神經(jīng)突觸要求權(quán)重可變且要有記憶功能, IBM采用與CMOS工藝兼容的相變非易失存儲(chǔ)器(PCM)的技術(shù)實(shí)驗(yàn)性的實(shí)現(xiàn)了新型突觸,加快了商業(yè)化進(jìn)程。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • FPGA
    +關(guān)注

    關(guān)注

    1625

    文章

    21620

    瀏覽量

    601231
  • asic
    +關(guān)注

    關(guān)注

    34

    文章

    1183

    瀏覽量

    120221
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4673

    瀏覽量

    128591
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    29805

    瀏覽量

    268102

原文標(biāo)題:什么是AI芯片:架構(gòu)、分類及關(guān)鍵技術(shù)

文章出處:【微信號(hào):xinlun99,微信公眾號(hào):芯論】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    risc-v多核芯片AI方面的應(yīng)用

    處理器的性能,使其在處理復(fù)雜的AI任務(wù)時(shí)具有更高的效率。同時(shí),RISC-V允許任何人免費(fèi)設(shè)計(jì)、制造和銷售RISC-V芯片和軟件,無(wú)需像ARM那樣購(gòu)買昂貴的架構(gòu)許可證,這進(jìn)一步降低了RISC-V多核
    發(fā)表于 04-28 09:20

    #芯片 #AI 世界最強(qiáng)AI芯片H200性能大揭秘!

    芯片AI
    深圳市浮思特科技有限公司
    發(fā)布于 :2023年11月15日 15:54:37

    AI芯片哪里買?

    AI芯片
    芯廣場(chǎng)
    發(fā)布于 :2024年05月31日 16:58:19

    手把手教你設(shè)計(jì)人工智能芯片及系統(tǒng)--(全階設(shè)計(jì)教程+AI芯片FPGA實(shí)現(xiàn)+開發(fā)板)

    `` 為什么發(fā)起AI芯片設(shè)計(jì)眾籌 ?1、傳統(tǒng)指令驅(qū)動(dòng)的處理器(CPU和GPU)已經(jīng)無(wú)法支持?jǐn)?shù)據(jù)驅(qū)動(dòng)的AI技術(shù),專用AI
    發(fā)表于 07-19 11:54

    GPS芯片關(guān)鍵技術(shù)是什么

    談到GPS芯片主要關(guān)鍵技術(shù),這包括負(fù)責(zé)訊號(hào)處理─基頻(Baseband)及接收訊號(hào)─射頻(RF)。由于GPS訊號(hào)頻率(1,575.42MHz)來(lái)自于距離地面2萬(wàn)公里的高空,訊號(hào)十分不穩(wěn)定,因此當(dāng)天
    發(fā)表于 07-30 06:52

    AI發(fā)展對(duì)芯片技術(shù)有什么影響?

    現(xiàn)在說(shuō)AI是未來(lái)人類技術(shù)進(jìn)步的一大方向,相信大家都不會(huì)反對(duì)。說(shuō)到AI芯片技術(shù)的關(guān)系,我覺得主要體現(xiàn)在兩個(gè)方面:第一,
    發(fā)表于 08-12 06:38

    AI芯片怎么分類?

    AI芯片作為產(chǎn)業(yè)核心,也是技術(shù)要求和附加值最高的環(huán)節(jié),在AI產(chǎn)業(yè)鏈中的產(chǎn)業(yè)價(jià)值和戰(zhàn)略地位遠(yuǎn)遠(yuǎn)大于應(yīng)用層創(chuàng)新。騰訊發(fā)布的《中美兩國(guó)人工智能產(chǎn)業(yè)發(fā)展全面解讀》報(bào)告顯示,基礎(chǔ)層的處理器/
    發(fā)表于 08-13 08:42

    【免費(fèi)直播】AI芯片專家陳小柏博士,帶你解析AI算法及其芯片操作系統(tǒng)。

    。并且跟大家從多個(gè)視角暢聊展望人工智能芯片的未來(lái)發(fā)展趨勢(shì)。適合各類對(duì)AI芯片感興趣的學(xué)員們,歡迎大家屆時(shí)來(lái)聽。直播主題:【第2期】AI芯片
    發(fā)表于 11-07 14:03

    AI芯片熱潮和架構(gòu)創(chuàng)新有什么作用

    魏少軍談AI芯片熱潮和架構(gòu)創(chuàng)新 透露清華Thinker芯片將獨(dú)立融資
    發(fā)表于 04-23 14:59

    AI芯片熱潮和架構(gòu)創(chuàng)新是什么

    魏少軍談AI芯片熱潮和架構(gòu)創(chuàng)新 透露清華Thinker芯片將獨(dú)立融資
    發(fā)表于 04-24 11:29

    清華出品:最易懂的AI芯片報(bào)告!人才技術(shù)趨勢(shì)都在這里 精選資料分享

    , 數(shù)據(jù)量呈現(xiàn)爆炸性增長(zhǎng)態(tài)勢(shì),而傳統(tǒng)的計(jì)算架構(gòu)又無(wú)法支撐深度學(xué)習(xí)的大規(guī)模并行計(jì)算需求, 于是研究界對(duì) AI 芯片進(jìn)行了新一輪的技術(shù)研發(fā)與應(yīng)用研究。
    發(fā)表于 07-23 09:19

    什么是HarmonyOS?鴻蒙OS架構(gòu)關(guān)鍵技術(shù)是什么?

    什么是HarmonyOS?鴻蒙OS架構(gòu)關(guān)鍵技術(shù)是什么?
    發(fā)表于 09-23 09:02

    AI芯片科普:邊緣AI芯片是什么

    來(lái)源:集成電路前沿? 1:AI芯片分類 市場(chǎng)上很多AI芯片,令人眼花繚亂。根據(jù)其應(yīng)用范圍,大體上可以分為幾類:? 終端
    發(fā)表于 01-11 16:23 ?4369次閱讀
    <b class='flag-5'>AI</b><b class='flag-5'>芯片</b>科普:邊緣<b class='flag-5'>AI</b><b class='flag-5'>芯片</b>是什么

    為何AI需要新的芯片架構(gòu)

    、處理器架構(gòu)類型、技術(shù)、應(yīng)用、垂直行業(yè)等。不過(guò),AI芯片主要應(yīng)用于兩個(gè)領(lǐng)域,即終端應(yīng)用(例如手機(jī)和智能手表中的芯片)和數(shù)據(jù)中心應(yīng)用(用于深度
    的頭像 發(fā)表于 05-13 04:45 ?788次閱讀

    ai芯片技術(shù)架構(gòu)有哪些

    ai芯片技術(shù)可以分為不同的體系架構(gòu)。下面將對(duì)ai芯片技術(shù)
    的頭像 發(fā)表于 08-09 14:28 ?1502次閱讀