0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

EUV曝光技術(shù)的未來藍(lán)圖逐漸“步入”我們的視野

傳感器技術(shù) ? 來源:lq ? 2019-01-17 09:31 ? 次閱讀

用于高端邏輯半導(dǎo)體量產(chǎn)的EUV(Extreme Ultra-Violet,極紫外線光刻)曝光技術(shù)的未來藍(lán)圖逐漸“步入”我們的視野,從7nm階段的技術(shù)節(jié)點到今年(2019年,也是從今年開始),每2年~3年一個階段向新的技術(shù)節(jié)點發(fā)展。

高端邏輯半導(dǎo)體的技術(shù)節(jié)點和對應(yīng)的EUV曝光技術(shù)的藍(lán)圖。

也就是說,在EUV曝光技術(shù)的開發(fā)比較順利的情況下,5nm的量產(chǎn)日程時間會大約在2021年,3nm的量產(chǎn)時間大約在2023年。關(guān)于更先進(jìn)的2nm的技術(shù)節(jié)點,還處于模糊階段,據(jù)預(yù)測,其量產(chǎn)時間最快也是在2026年。

決定解像度(Half Pitch)的是波長和數(shù)值孔徑、工程系數(shù)

技術(shù)節(jié)點的發(fā)展推動著半導(dǎo)體曝光技術(shù)解像度(Half Pitch)的發(fā)展,ArF液浸曝光技術(shù)和EUV曝光技術(shù)等的解像度(R)和曝光波長(λ)成正比,和光學(xué)的數(shù)值孔徑(NA,Numerical Aperture)成反比,也就是說,如果要增大解像度,需要在縮短波長的同時,擴(kuò)大數(shù)值孔徑。

實際上,解像度和被稱為“工程系數(shù)(k1)”的定數(shù)也成一定的比例關(guān)系。如果降低工程系數(shù),解像度就會上升。但是,工程系數(shù)如果降低到最小極限值(0.25),就無法再降低了。

ArF液浸曝光技術(shù)、EUV曝光技術(shù)中的解像度(Half Pitch)(R)和波長、數(shù)值孔徑(NA)、工程系數(shù)(k1)的關(guān)系。

在ArF液浸曝光技術(shù)、EUV曝光技術(shù)中,光源的波長是固定的,無法改變。順便說一下,ArF液浸曝光的波長是193nm,EUV曝光的波長是13.5nm。兩者有超過10倍的差距,單純計算的話,EUV曝光絕對是占優(yōu)勢。

對ArF液浸曝光技術(shù)以前的光制版(lithography)技術(shù)來說,提高數(shù)值孔徑是提高解像度的有效手段。具體來說,就是通過改良作為曝光設(shè)備的Stepper和Scanner,來提高數(shù)值孔徑。

與之相反,運用EUV曝光技術(shù)的話,不怎么需要改變數(shù)值孔徑,EUV曝光技術(shù)利用X線的反射光學(xué)系統(tǒng),光學(xué)系統(tǒng)擁有非常復(fù)雜的構(gòu)造,同時光學(xué)系統(tǒng)的變化也會伴隨著巨額的開發(fā)投資。所以,過去一直以來EUV曝光設(shè)備方面從沒有更改過數(shù)值孔徑。最初的EUV scanner的數(shù)值孔徑是0.25,現(xiàn)行設(shè)備的數(shù)值孔徑是0.33,不管怎么說,和ArF Dry曝光技術(shù)的最高值(0.93)相比,都是很低的。

正如在本欄目中去年(2018年)12月報道的一樣(使用EUV曝光的高端邏輯半導(dǎo)體和高端DRAM的量產(chǎn)終于開始了!),用于量產(chǎn)7nm的最尖端邏輯半導(dǎo)體的EUV scanner--“NXE:3400B”內(nèi)置的數(shù)值孔徑是0.33。

而且,今后數(shù)年內(nèi),都會在使用數(shù)值孔徑為0.33的EUV scanner的同時,提高解像度。換句話說,也就是通過使用同樣數(shù)值孔徑的曝光設(shè)備來使解像度(Half Pitch)更細(xì)微化。

通過階段性地降低工程系數(shù)來提高解像度

所以,很多用來提高細(xì)微化的辦法都被限制了,因為波長和數(shù)值孔徑是固定的,剩下的就是工程系數(shù)。光學(xué)方面,通過降低工程系數(shù),可以提高解像度。和ArF液浸曝光技術(shù)一樣,通過和Multi-patterning 技術(shù)組合起來,就可以達(dá)到實質(zhì)上降低工程系數(shù)的效果。而且,機(jī)械方面,有必要降低曝光設(shè)備的重合誤差。

提高EUV曝光技術(shù)的解像度的方法(2019年以后)

據(jù)EUV曝光設(shè)備廠商ASML說,他們把未來EUV曝光技術(shù)方面的細(xì)微化工作分為“四代”?,F(xiàn)行技術(shù)水平是第一代,同時也是7nm邏輯半導(dǎo)體的量產(chǎn)是用的技術(shù)。工程系數(shù)是0.45左右。

第二代是把工程系數(shù)降低到0.40以下,通過改良曝光技術(shù)的硬件(光學(xué)方面)和軟件(阻焊層,resist)得以實現(xiàn)。其技術(shù)核心也不過是改良現(xiàn)行技術(shù)。

第三代是把工程系數(shù)降低到0.30以下,要得以實現(xiàn),只改良現(xiàn)行技術(shù)比較困難,需要導(dǎo)入像Multi-pattering、新型mask材料、新型resist材料等這些基本要素。

第四代,由于工程系數(shù)無法再降低,所以開發(fā)新的光學(xué)系統(tǒng),它可以數(shù)值孔徑提高到0.55。

EUV曝光設(shè)備廠家ASML公布的EUV曝光技術(shù)的發(fā)展。

ASML公布的技術(shù)發(fā)展資料里面沒有提到工程系數(shù)的具體數(shù)值,不過我們把工程系數(shù)的假設(shè)值放進(jìn)去計算了一下,看看解像度可以提到何種程度,現(xiàn)行(第一代)的工程系數(shù)是0.46,其對應(yīng)的解像度(Half Pitch)是19nm。

假設(shè)第二代的工程系數(shù)為0.39,對應(yīng)的解像度為16nm,如果是最先進(jìn)的邏輯半導(dǎo)體的技術(shù)節(jié)點的話,可以適用于7nm~5nm的量產(chǎn)品。

假設(shè)第三代的工程系數(shù)是0.29,對應(yīng)的解像度是12nm,如果是最先進(jìn)的邏輯半導(dǎo)體的技術(shù)節(jié)點的話,可以適用于5nm~3nm的量產(chǎn)品。

由于第四代大幅度更改了數(shù)值孔徑,工程系數(shù)假設(shè)為0.46,和第一代相同。假設(shè)數(shù)值孔徑為0.55,工程系數(shù)即使增加為0.46,相對應(yīng)的解像度也和第三代基本相同,為11.3nm,可以適用于5nm~3nm的量產(chǎn)品。

EUV曝光技術(shù)發(fā)展和解像度的發(fā)展。以EUV曝光機(jī)廠商ASML發(fā)布的數(shù)據(jù)為基礎(chǔ)作者推測的數(shù)字。

把Multi-patterning(多重曝光)

導(dǎo)入到EUV曝光技術(shù)里

不需要改良光學(xué)系統(tǒng)和阻焊層(resist)等曝光技術(shù),把工程系數(shù)k1實質(zhì)性地降低的辦法----Multi-patterning(多重曝光)技術(shù)。正在討論把ArF液浸曝光方面廣泛普及的多重曝光技術(shù)應(yīng)用到EUV曝光技術(shù)里。

比方說,兩次曝光就是導(dǎo)入LELE技術(shù),即重復(fù)兩次Lithography(L)和Etching(E),如果把LELE技術(shù)導(dǎo)入到工程系數(shù)為0.46的EUV曝光技術(shù)(數(shù)值孔徑為0.33)上,解像度會變?yōu)?6nm,這和把單次曝光時的工程系數(shù)降到0.39得到的效果一樣。

三次曝光,即導(dǎo)入LELELE技術(shù),重復(fù)三次Lithography(L)和Etching(E),再次降低解像度,為12nm,這和把單次曝光時的工程系數(shù)降低到0.29得到的效果一樣。

但是,利用多重曝光技術(shù)的話,“吞吐量(through-put)”會大幅度降低,單次曝光(SE技術(shù))的晶圓處理數(shù)量約為130片/小時,兩次曝光(LELE)曝光的話,下降為70片/小時,三次曝光(LELELE)曝光的“吞吐量”下降為單次的1/3,為40片/小時。

聯(lián)合運用EUV曝光和多重曝光的解像度和“吐出量”的變化(k1是0.46),作者根據(jù)ASML公布的數(shù)據(jù)總結(jié)的數(shù)字。

總結(jié)一下,新型的5nm技術(shù)有兩個方向,第一、維持著單次曝光技術(shù)的同時,把工程系數(shù)下降到0.39;第二、通過利用兩次曝光(LELE技術(shù))技術(shù),實質(zhì)性地降低工程系數(shù)。兩個的解像度都是16nm,預(yù)計量產(chǎn)開始時間為2021年。如果采用兩次曝光技術(shù),預(yù)計量產(chǎn)時間可以提前到2020年。

第三代的3nm技術(shù)的節(jié)點稍微有點復(fù)雜,有三個方向:第一、把單次曝光的工程系數(shù)維持為0.29;第二、聯(lián)合兩次曝光(LELE技術(shù))和把工程系數(shù)改為0.39的曝光技術(shù);第三、利用三次曝光(LELELE)技術(shù)。三個方向的解像度都是12nm,預(yù)計量產(chǎn)時間為2023年。但是,如果采用三次曝光的話,量產(chǎn)時間有可能再提前。

關(guān)于第四代2nm技術(shù)節(jié)點,如果用數(shù)值孔徑為0.33的EUV曝光技術(shù)估計很難實現(xiàn)。應(yīng)該是期待把數(shù)值孔徑提高到0.55的EUV曝光技術(shù)。

EUV曝光設(shè)備的組合運用,

繼續(xù)改良精度和生產(chǎn)性能

EUV曝光技術(shù)的開發(fā)方面最重要的是EUV曝光設(shè)備(EUV scanner)的改良。EUV曝光設(shè)備廠商ASML已經(jīng)公布了繼用于現(xiàn)行量產(chǎn)品7nm的EUV scanner--“NXE:3400B”之后的開發(fā)藍(lán)圖。

據(jù)ASML的技術(shù)藍(lán)圖預(yù)測,以“NXE:3400B”為基礎(chǔ),首次開發(fā)降低重合誤差的版本,后面是以“降低重合誤差版本”為基礎(chǔ),開發(fā)提高“吐出量”(生產(chǎn)性能)的版本。預(yù)計在今年(2019年)的上半年,完成這些改良。

基于以上改良成果的新產(chǎn)品“NXE:3400C”預(yù)計會在今年年末開始出貨,預(yù)計“NXE:3400C”將要“擔(dān)任”5nm的量產(chǎn)工作。

而且,降低重合誤差的同時,還要開發(fā)提高產(chǎn)能的新版本,ASML還沒有公布新版本的型號,出貨時間預(yù)計在2021年的下半年,新版本應(yīng)該會承擔(dān)3nm的量產(chǎn)工作吧。

EUV曝光設(shè)備(EUV scanner)的開發(fā)藍(lán)圖,作者根據(jù)ASML公布的數(shù)據(jù)匯總的。

EUV曝光設(shè)備的開發(fā)藍(lán)圖,摘自2018年12月ASML在國際學(xué)會IEDM上發(fā)布的論文。

新一代用于量產(chǎn)的EUV曝光設(shè)備(EUV scanner)“NXE:3400C”的概要,出自ASML在2018年12月國際學(xué)會IEDM的演講資料。

這些曝光設(shè)備基本都是搭載了數(shù)值孔徑為0.33的光學(xué)系統(tǒng)。ASML同時也在致力于開發(fā)把數(shù)值孔徑提高到0.55的EUV曝光設(shè)備。

被ASML稱為“High NA”的、數(shù)值孔徑為0.55的EUV scanner的出貨時間預(yù)計在2023年的下半年,首批試驗設(shè)備預(yù)計在2021年年底做成。關(guān)于“High NA”設(shè)備的開發(fā)情況,我們后續(xù)會繼續(xù)報道。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 半導(dǎo)體
    +關(guān)注

    關(guān)注

    334

    文章

    26855

    瀏覽量

    214350
  • EUV
    EUV
    +關(guān)注

    關(guān)注

    8

    文章

    603

    瀏覽量

    85938
  • ASML
    +關(guān)注

    關(guān)注

    7

    文章

    715

    瀏覽量

    41137

原文標(biāo)題:EUV光刻將走向何方?

文章出處:【微信號:WW_CGQJS,微信公眾號:傳感器技術(shù)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    一種避免高速相機(jī)過度曝光的新技術(shù)

    的視場內(nèi)重設(shè)參數(shù),避免圖像過度曝光。 傳統(tǒng)高動態(tài)范圍技術(shù) 傳統(tǒng)的高動態(tài)范圍高速相機(jī)大致分為兩種技術(shù)類型:多幀圖像融合技術(shù)和單幀圖像融合技術(shù)。
    發(fā)表于 02-15 14:03

    Nordic發(fā)布低功耗蜂窩物聯(lián)網(wǎng)產(chǎn)品發(fā)展藍(lán)圖

    ?! ??Nordic Semiconductor首席執(zhí)行官Svenn-ToreLarsen表示:“我們非常高興地發(fā)布蜂窩IoT產(chǎn)品發(fā)展藍(lán)圖,通過結(jié)合超低功耗無線血統(tǒng)和來自芬蘭獨特的蜂窩技術(shù)專長,Nordic擁有強(qiáng)大
    發(fā)表于 07-17 17:31

    物聯(lián)網(wǎng)、AR、3D打印、機(jī)器人未來將改變我們的生活?

    導(dǎo)讀: 物聯(lián)網(wǎng)、增強(qiáng)現(xiàn)實(AR)、3D打印和機(jī)器人技術(shù),曾經(jīng)只能在科幻電影里看到的黑科技,正在逐漸走進(jìn)我們的生活。由口袋妖怪到AR紅包,越來越多的新技術(shù)在不斷走進(jìn)
    發(fā)表于 10-19 09:18

    EUV熱潮不斷 中國如何推進(jìn)半導(dǎo)體設(shè)備產(chǎn)業(yè)發(fā)展?

    研究總監(jiān)王笑龍便指出:“EUV技術(shù)的研發(fā)主要是針對傳統(tǒng)工藝中多次曝光等繁瑣問題。在過去的技術(shù)中,曝光過程可能重復(fù)2~3次,但是
    發(fā)表于 11-14 16:24

    數(shù)字曝光打印技術(shù)

    曝光技術(shù)相比,直接成像數(shù)字曝光的優(yōu)勢有很多,其中包括更高的材料靈活性、更低的成本和更快的打印速度。 由TI實現(xiàn)的直接成像數(shù)字曝光 在TI,我們
    發(fā)表于 08-29 15:19

    ADAS的發(fā)展給駕駛員駕駛視野的改變

    有哪些新功能? 現(xiàn)在,許多OEM廠商已經(jīng)在汽車中配置了某些形式的HUD。但是,隨著HUD關(guān)鍵技術(shù)的進(jìn)步,了解HUD潛能的汽車生產(chǎn)商們開始有更高的需求。 這些因素包括更寬的駕駛視野(FOV),增強(qiáng)現(xiàn)實
    發(fā)表于 08-29 16:17

    相機(jī)成像不產(chǎn)生拖影的曝光時間計算

    我們知道,在相機(jī)選型的時候,需要考慮是否需要拍攝運動的物體,若拍攝運動的物體時,選型的時候需要考慮相機(jī)芯片的類型,需要考慮相機(jī)芯片是否是全局曝光模式的,卷簾曝光拍攝運動的物體時,無論曝光
    發(fā)表于 12-10 09:58

    半導(dǎo)體制造企業(yè)未來分析

    哪些市場信息? 晶圓代工廠不惜重金 在制造工藝演進(jìn)到10nm之后,晶圓廠都在為摩爾定律的繼續(xù)前進(jìn)而做各種各樣的努力,EUV則是被看作的第一個倚仗。而從EUV光刻機(jī)ASML的財務(wù)數(shù)據(jù)我們可以看到,其
    發(fā)表于 02-27 10:42

    無線充電技術(shù)未來的發(fā)展藍(lán)圖

    的成長,后代無疑將在日常生活中廣泛使用技術(shù)。這些設(shè)備需要電力,而關(guān)鍵問題是電池。它們不僅重量巨大,而且還需要定期更換,可能會失敗。綠色未來對清潔未來和無污染環(huán)境的需求已經(jīng)變得至關(guān)重要,而且這個問題已經(jīng)上升
    發(fā)表于 04-07 11:19

    直接成像數(shù)字曝光技術(shù)介紹

    自18世紀(jì)在德國被發(fā)明以來,被稱為“數(shù)字曝光”的打印方法經(jīng)歷了一段很長的發(fā)展歷程。今天,數(shù)字曝光可以在多種表面上打印文字和圖片,包括書本和T恤。 這項打印技術(shù)的變化也不斷地激發(fā)出新的創(chuàng)新。被稱為
    發(fā)表于 11-16 07:18

    浸潤式微影技術(shù)強(qiáng)勢晉級,EUV技術(shù)可有出頭日?

    浸潤式微影技術(shù)、多重圖形以及高折射率液體,將讓193納米微影設(shè)備走到國際半導(dǎo)體技術(shù)藍(lán)圖(ITRS)目前的終點:8納米。屆時,EUV技術(shù)可有出
    發(fā)表于 12-26 09:40 ?5686次閱讀

    傳三星與SK海力士正在研發(fā)EUV技術(shù) 未來有機(jī)會藉此將生產(chǎn)DRAM的成本降低

    就在臺積電與三星在邏輯芯片制程技術(shù)逐漸導(dǎo)入EUV技術(shù)之后,存儲器產(chǎn)業(yè)也將追隨。也就是全球存儲器龍頭三星在未來1Y納米制程的DRAM存儲器芯片
    的頭像 發(fā)表于 10-29 17:03 ?3715次閱讀

    探析EUV光刻未來的發(fā)展趨勢

    用于高端邏輯半導(dǎo)體量產(chǎn)的EUV(Extreme Ultra-Violet,極紫外線光刻)曝光技術(shù)未來藍(lán)圖
    的頭像 發(fā)表于 01-21 10:45 ?3208次閱讀
    探析<b class='flag-5'>EUV</b>光刻<b class='flag-5'>未來</b>的發(fā)展趨勢

    EUV光刻技術(shù)優(yōu)勢及挑戰(zhàn)

    EUV光刻技術(shù)仍被認(rèn)為是實現(xiàn)半導(dǎo)體行業(yè)持續(xù)創(chuàng)新的關(guān)鍵途徑。隨著技術(shù)的不斷發(fā)展和成熟,預(yù)計EUV光刻將在未來繼續(xù)推動芯片制程的進(jìn)步。
    發(fā)表于 05-18 15:49 ?2721次閱讀
    <b class='flag-5'>EUV</b>光刻<b class='flag-5'>技術(shù)</b>優(yōu)勢及挑戰(zhàn)

    什么是EUV***?

    需要明確什么是EUV光刻機(jī)。它是一種采用極紫外線光源進(jìn)行曝光的設(shè)備。與傳統(tǒng)的ArF光刻機(jī)相比,EUV光刻機(jī)可以將曝光分辨率提高到7納米以下的超高級別,從而實現(xiàn)更高清晰度和更高性能的芯片
    發(fā)表于 05-22 12:48 ?4311次閱讀