隨著設(shè)備價格的下降及全球市場擴大,RFID應(yīng)用正面臨飛速發(fā)展。嵌入式RFID的使用量不斷提高,隨著泛在ID中心(Ubiquitous ID Center)和T引擎論壇(T-Engine Forum)等協(xié)調(diào)性機構(gòu)的形成,GSM協(xié)會現(xiàn)已支持將基于RFID的近場通信技術(shù)運用于手機中。
RFID的一大挑戰(zhàn)是在復(fù)雜的、甚至苛刻的RF環(huán)境中優(yōu)化吞吐量或數(shù)據(jù)讀取速度。無源RFID標簽可以對射頻范圍內(nèi)的任何一個或多個閱讀器做出反應(yīng)。協(xié)議中規(guī)定了這些通信的行為,但在實際的通信過程中,如果沒有適當?shù)脑O(shè)備,則很難對其進行測試。此外,在集成到采用蜂窩技術(shù)、WLAN、藍牙或Zigbee技術(shù)的同一臺設(shè)備中時,也需要運行嵌入式RFID系統(tǒng)。最后,必須考慮同一頻段中其它用戶發(fā)出的干擾。
其結(jié)果是,在部署前就有必要仿真復(fù)雜的RF環(huán)境,并分析RFID系統(tǒng)在這些條件下的性能。RFID的脈沖式特點和典型的干擾源令測試任務(wù)變得更富挑戰(zhàn)性。
RFID技術(shù)概述
最簡單的RFID系統(tǒng)由一個標簽(可以是無源標簽)和一個閱讀器組成。從結(jié)構(gòu)上看,無源標簽的讀取與傳統(tǒng)全雙工數(shù)據(jù)鏈路略有不同。與傳統(tǒng)有源數(shù)據(jù)鏈路不同的是,無源標簽依賴其收到的RF能量為自身供電。無源標簽同樣不會生成自己的傳送載波信號,而是調(diào)制詢問器發(fā)送到標簽的部分能量,這一過程稱為反向散射。
通過把標簽的天線負荷從吸收負荷改變?yōu)榉瓷湄摵?,可以調(diào)制來自詢問器的連續(xù)波 (CW)信號。這個過程與利用鏡子和陽光向遠處某人發(fā)送信號的過程非常類似。此外,這樣還消除了標簽中對高精度頻率來源和功率密集型發(fā)射機的需求。由于閱讀器和標簽共享相同的頻率,它們必須輪流發(fā)送信息。因此,反向散射把閱讀器和標簽之間的通信限定在半雙工系統(tǒng)上。
由于從標簽(T)到閱讀器 (R) (表示為T→R)的上行方向從詢問器的CW信號中調(diào)制,因此可以使用擴頻技術(shù),如跳頻。在接收機零差下變頻中,任何詢問器信號的擴展或跳頻會被自動刪除,因為它們共享相同的本振(LO)信號。
當存在多個標簽、多個閱讀器和干擾時,這個簡單的系統(tǒng)會變得更加復(fù)雜。讓我們看一下來自這些情況下的兩個RFID設(shè)計挑戰(zhàn)。
多個閱讀器和密集模式環(huán)境
無源RFID標簽的寬帶特點也給密集的(多個)閱讀器站點帶來了某些挑戰(zhàn)。由于標簽閱讀器確定了系統(tǒng)的工作頻率,且標簽是對任何閱讀器進行應(yīng)答的寬帶設(shè)備,因此標簽對某個特定閱讀器的應(yīng)答能力有限。無源標簽可能會試圖對所有發(fā)出詢問的閱讀器做出應(yīng)答。
許多RFID系統(tǒng)將被運用到多個閱讀器或密集模式環(huán)境中,以下是一些定義:
·單閱讀器環(huán)境:環(huán)境中只有一個閱讀器工作;
·多個閱讀器環(huán)境:同時工作的閱讀器數(shù)量低于提供的通道數(shù)量;
·密集閱讀器模式:挑戰(zhàn)最大的環(huán)境,其中閱讀器數(shù)量超過通道數(shù)量。
閱讀器和標簽干擾可能發(fā)生在工作環(huán)境內(nèi)部,在這個區(qū)域內(nèi),閱讀器的RF信號衰減低于90 dBc (輻射范圍大約相當于方圓1千米的自由空間)。因此,在密集模式環(huán)境中,不管是出于設(shè)計還是由于相鄰的RFID閱讀器,許多閱讀器都將會停止工作。
對于一個擁有多個固定閱讀器和精確頻譜規(guī)劃的倉庫應(yīng)用環(huán)境,在1千米范圍以內(nèi)來自相鄰設(shè)備的干擾可能會達到最小。然而,由于缺少對安全的緩和距離的控制,移動RFID設(shè)備所面對的將是一個密集模式閱讀器環(huán)境。在這種情況下,找出現(xiàn)有或之后RFID系統(tǒng)應(yīng)用環(huán)境中可能存在哪些信號,并了解閱讀器和標簽在存在干擾時的行為變得非常關(guān)鍵。
針對這種環(huán)境,已通過認證用于密集環(huán)境的ISO18000-6C 閱讀器通常會切換到米勒調(diào)制副載波(MMS)編碼。這種精心設(shè)計的編碼技術(shù)在每個比特位下提供了更多的跳變,因而在有噪聲時更容易解碼,但對同一標簽反向散射鏈路頻率(BLF)來說速度較慢。共有三種不同的MMS方案可供選擇,即Miller-2、Miller-4和Miller-8,其中的數(shù)字指明了多少個BLF周期定義一個數(shù)據(jù)符號。例如,在使用40 kHz的最慢BLF時,Miller-8的數(shù)據(jù)速率是BLF/8 = 5kbit/s。在這種慢的速率下,傳送一個96位EPC和16位錯誤校驗將需要22.4ms,對應(yīng)每秒讀取不到45個標簽(當包括一些命令字節(jié)時,如前向鏈路命令,那么能夠讀取的標簽數(shù)量會進一步下降)。出于吞吐量原因,人們不希望以這么低的速率傳送信號,另外某些法規(guī)(如美國FCC Part15)規(guī)定,根據(jù)信號20dB的帶寬,在10s或20s的周期內(nèi),只允許在某個頻率上持續(xù)工作平均約400ms。這種法規(guī)要求標簽閱讀器在400ms后空出通道,跳到一個其他的頻率,即使在原有頻率上的閱讀還沒有完成。
根據(jù)ISO18000-7規(guī)范工作的閱讀器和標簽采取不同的方法。它們使用更長的RF傳輸及更低的傳送速率,提高了信號的抗干擾能力。對采用同等商用版本ISO18185的集裝箱應(yīng)用,這要求最大傳輸周期提高到60s,同時在傳輸之間保持10s的最低靜默周期(FCC part15.240)。在這么慢的傳送速率下,可能要用兩分鐘才能傳送識別集裝箱所有貨物所需的整個128kB數(shù)據(jù)。根據(jù)這一標準使用的標簽是有源標簽,也就是說它們帶有機載電源,一般輻射功率要高于無源標簽。
這兩種技術(shù)都意味著測試解決方案必需在相對較長的時間周期內(nèi)收集與脈沖式信號有關(guān)的詳細的RF數(shù)據(jù)。
評論
查看更多