電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>工業(yè)控制>機(jī)器視覺>FlowNet - 卷積神經(jīng)網(wǎng)絡(luò)(CNN)在無人駕駛中應(yīng)用的3D感知與物體檢測

FlowNet - 卷積神經(jīng)網(wǎng)絡(luò)(CNN)在無人駕駛中應(yīng)用的3D感知與物體檢測

上一頁123下一頁全文
收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關(guān)推薦

基于3D數(shù)據(jù)卷積神經(jīng)網(wǎng)絡(luò)物體識別

FusionNet的核心是全新的、應(yīng)用于3D物體的三維卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)。我們必須在多個方面調(diào)整傳統(tǒng)的CNN以使其有效。
2020-01-16 16:36:003423

什么是卷積神經(jīng)網(wǎng)絡(luò)?完整的卷積神經(jīng)網(wǎng)絡(luò)(CNNS)解析

卷積神經(jīng)網(wǎng)絡(luò)CNN)是一種特殊類型的神經(jīng)網(wǎng)絡(luò),在圖像上表現(xiàn)特別出色。卷積神經(jīng)網(wǎng)絡(luò)由Yan LeCun在1998年提出,可以識別給定輸入圖像中存在的數(shù)字。
2022-08-10 11:49:0618292

使用PyTorch深度解析卷積神經(jīng)網(wǎng)絡(luò)

卷積神經(jīng)網(wǎng)絡(luò)CNN)是一種特殊類型的神經(jīng)網(wǎng)絡(luò),在圖像上表現(xiàn)特別出色。卷積神經(jīng)網(wǎng)絡(luò)由Yan LeCun在1998年提出,可以識別給定輸入圖像中存在的數(shù)字。
2022-09-21 10:12:50637

卷積神經(jīng)網(wǎng)絡(luò)(CNN)的工作原理 神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程

前文《卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機(jī)器學(xué)習(xí)?》中,我們比較了在微控制器中運(yùn)行經(jīng)典線性規(guī)劃程序與運(yùn)行CNN的區(qū)別,并展示了CNN的優(yōu)勢。我們還探討了CIFAR網(wǎng)絡(luò),該網(wǎng)絡(luò)可以對圖像中的貓、房子或自行車等對象進(jìn)行分類,還可以執(zhí)行簡單的語音識別。本文重點解釋如何訓(xùn)練這些神經(jīng)網(wǎng)絡(luò)以解決實際問題。
2023-09-05 10:19:43865

卷積神經(jīng)網(wǎng)絡(luò)CNN介紹

【深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37

卷積神經(jīng)網(wǎng)絡(luò)—深度卷積網(wǎng)絡(luò):實例探究及學(xué)習(xí)總結(jié)

《深度學(xué)習(xí)工程師-吳恩達(dá)》03卷積神經(jīng)網(wǎng)絡(luò)—深度卷積網(wǎng)絡(luò):實例探究 學(xué)習(xí)總結(jié)
2020-05-22 17:15:57

卷積神經(jīng)網(wǎng)絡(luò)一維卷積的處理過程

以前的神經(jīng)網(wǎng)絡(luò)幾乎都是部署云端(服務(wù)器上),設(shè)備端采集到數(shù)據(jù)通過網(wǎng)絡(luò)發(fā)送給服務(wù)器做inference(推理),結(jié)果再通過網(wǎng)絡(luò)返回給設(shè)備端。如今越來越多的神經(jīng)網(wǎng)絡(luò)部署嵌入式設(shè)備端上,即
2021-12-23 06:16:40

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10

卷積神經(jīng)網(wǎng)絡(luò)入門資料

卷積神經(jīng)網(wǎng)絡(luò)入門詳解
2019-02-12 13:58:26

卷積神經(jīng)網(wǎng)絡(luò)原理及發(fā)展過程

Top100論文導(dǎo)讀:深入理解卷積神經(jīng)網(wǎng)絡(luò)CNN(Part Ⅰ)
2019-09-06 17:25:54

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

網(wǎng)絡(luò) GhostNet。由于卷積神經(jīng)網(wǎng)絡(luò)的一系列突破性研究成果, 并根據(jù)不同的任務(wù)需求不斷改進(jìn),使其目標(biāo)檢測、 語義分割、自然語言處理等不同的任務(wù)均獲得了 成功的應(yīng)用。基于以上認(rèn)識,本文首先概括性
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點是什么

卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點
2020-05-05 18:12:50

卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)的整體網(wǎng)絡(luò)結(jié)構(gòu)和發(fā)展過程

Top100論文導(dǎo)讀:深入理解卷積神經(jīng)網(wǎng)絡(luò)CNN(Part Ⅱ)
2019-08-22 14:20:39

卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機(jī)器學(xué)習(xí)?

抽象人工智能 (AI) 的世界正在迅速發(fā)展,人工智能越來越多地支持以前無法實現(xiàn)或非常難以實現(xiàn)的應(yīng)用程序。本系列文章解釋了卷積神經(jīng)網(wǎng)絡(luò)CNN) 及其 AI 系統(tǒng)機(jī)器學(xué)習(xí)的重要性。CNN 是從
2023-02-23 20:11:10

卷積神經(jīng)網(wǎng)絡(luò)CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

無人駕駛與自動駕駛的差別性

駕駛、自動駕駛汽車使用的雷達(dá)主要目的是測量前后車的車距,使用攝像頭、毫米波雷達(dá)等安裝在前后;而無人駕駛汽車除了需要配備前后保險杠雷達(dá)之外,最核心的信息來自于高精度3D激光雷達(dá),進(jìn)行空間建模。 受益對象
2017-09-28 16:50:52

無人駕駛分級及關(guān)鍵技術(shù)

無人駕駛分級無人駕駛汽車關(guān)鍵技術(shù)
2021-01-21 07:13:47

無人駕駛導(dǎo)航平臺

和實用性方面走在前列的國家是美國和德國,且已經(jīng)有多套系統(tǒng)城市運(yùn)營和試運(yùn)營,均取得了不錯的效果。我國無人駕駛汽車的開發(fā)方面要比國外稍晚。國防科技大學(xué)從20世紀(jì)80年代開始進(jìn)行該項技術(shù)研究。無人駕駛
2014-11-11 11:21:30

無人駕駛汽車的工作原理是什么?

無人駕駛汽車的工作原理是什么?無人駕駛汽車包括哪些技術(shù)?
2021-06-28 07:19:59

無人駕駛電子與安全

,處理器經(jīng)過數(shù)據(jù)分析然后根據(jù)機(jī)器學(xué)習(xí)長期積累的駕駛經(jīng)驗選擇最優(yōu)的解決方案,直接跨越到無人駕駛的階段?;诖髷?shù)據(jù)的分析,將可能出現(xiàn)的各種隱患消除未發(fā)生的萌芽。不管是安全駕駛還是無人駕駛都需要借助各類
2017-02-22 16:07:56

無人駕駛硬件之傳感器平臺

平臺的設(shè)計直接決定了無人駕駛對環(huán)境的感知能力、計算性能與能耗、魯棒性、安全性等。無人駕駛的硬件平臺又分為傳感器平臺、計算平臺、以及控制平臺三大部分。由于篇幅的問題,整個硬件平臺將被拆分為兩個部分,本文
2017-09-30 16:50:53

神經(jīng)網(wǎng)絡(luò)解決方案讓自動駕駛成為現(xiàn)實

制造業(yè)而言,深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)開辟了令人興奮的研究途徑。為了實現(xiàn)從諸如高速公路全程自動駕駛儀的短時輔助模式到專職無人駕駛旅行的自動駕駛,汽車制造業(yè)一直尋求讓響應(yīng)速度更快、識別準(zhǔn)確度更高的方法,而深度
2017-12-21 17:11:34

AI知識科普 | 從無人相信到萬人追捧的神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò),前面的層訓(xùn)練出的特征作為下一層的輸入,所以越到后面的層,特征越具體。卷積神經(jīng)網(wǎng)絡(luò)大型圖像處理方面展示出了非凡的效果。例如,我們需要在眾多圖像鑒別出一只貓,人類可以通過已有的常識判斷出特征
2018-06-05 10:11:50

TF之CNN:Tensorflow構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)CNN的嘻嘻哈哈事之詳細(xì)攻略

TF之CNN:Tensorflow構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)CNN的嘻嘻哈哈事之詳細(xì)攻略
2018-12-19 17:03:10

《 AI加速器架構(gòu)設(shè)計與實現(xiàn)》+第一章卷積神經(jīng)網(wǎng)絡(luò)觀后感

分成多個組別進(jìn)行處理。本章節(jié),對常見網(wǎng)絡(luò)算子進(jìn)行了說明(如圖6),卷積神經(jīng)網(wǎng)絡(luò)的核心運(yùn)算方式是卷積操作,池化操作和全連接操作。 圖1 思維導(dǎo)圖 圖2 GCN模塊分布圖 圖3 GCN模塊之間的關(guān)系
2023-09-11 20:34:01

【PYNQ-Z2申請】基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速

,得到訓(xùn)練參數(shù)2、利用開發(fā)板arm與FPGA聯(lián)合的特性,arm端實現(xiàn)圖像預(yù)處理已經(jīng)卷積神經(jīng)網(wǎng)絡(luò)的池化、激活函數(shù)和全連接,FPGA端實現(xiàn)卷積運(yùn)算3、對整個系統(tǒng)進(jìn)行調(diào)試。4、基本實現(xiàn)系統(tǒng)的基礎(chǔ)上
2018-12-19 11:37:22

【uFun試用申請】基于cortex-m系列核和卷積神經(jīng)網(wǎng)絡(luò)算法的圖像識別

項目名稱:基于cortex-m系列核和卷積神經(jīng)網(wǎng)絡(luò)算法的圖像識別試用計劃:本人在圖像識別領(lǐng)域有三年多的學(xué)習(xí)和開發(fā)經(jīng)驗,曾利用nesys4ddr的fpga開發(fā)板,設(shè)計過基于cortex-m3的軟核
2019-04-09 14:12:24

一文詳解CNN

1 CNN簡介 CNN卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks),是一類包含卷積計算的神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)(deep learning)的代表算法之一,圖像識別
2023-08-18 06:56:34

人臉識別、語音翻譯、無人駕駛...這些高科技都離不開深度神經(jīng)網(wǎng)絡(luò)了!

了。下面介紹幾種深度學(xué)習(xí)的方法,它們使識別錯誤率極大地降低。 卷積神經(jīng)網(wǎng)絡(luò):AlexNet 2012 年,深度學(xué)習(xí)第一次被運(yùn)用到 ImageNet 比賽。其效果非常顯著, 錯誤率從前一年的 26
2018-05-11 11:43:14

什么是圖卷積神經(jīng)網(wǎng)絡(luò)?

卷積神經(jīng)網(wǎng)絡(luò)
2019-08-20 12:05:29

從AlexNet到MobileNet,帶你入門深度神經(jīng)網(wǎng)絡(luò)

的深度神經(jīng)網(wǎng)絡(luò)運(yùn)用的方法。AlexNet研發(fā)的時候,使用的GTX580僅有3GB的顯存,所以創(chuàng)造性的把模型拆解兩張顯卡,架構(gòu)如下:1.第一層是卷積層,針對224x224x3的輸入圖片進(jìn)行卷積操作
2018-05-08 15:57:47

全連接神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

全連接神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42

關(guān)于卷積神經(jīng)網(wǎng)絡(luò)探秘的簡單了解

卷積神經(jīng)網(wǎng)絡(luò)探秘
2019-06-04 11:59:35

利用Keras實現(xiàn)四種卷積神經(jīng)網(wǎng)絡(luò)(CNN)可視化

Keras實現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)(CNN)可視化
2019-07-12 11:01:52

可分離卷積神經(jīng)網(wǎng)絡(luò) Cortex-M 處理器上實現(xiàn)關(guān)鍵詞識別

,接下來是密集全連接層。● 深度可分離卷積神經(jīng)網(wǎng)絡(luò) (DS-CNN)最近,深度可分離卷積神經(jīng)網(wǎng)絡(luò)被推薦為標(biāo)準(zhǔn) 3D 卷積運(yùn)算的高效替代方案,并已用于實現(xiàn)計算機(jī)視覺的緊湊網(wǎng)絡(luò)架構(gòu)。DS-CNN 首先使用獨立
2021-07-26 09:46:37

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實現(xiàn)設(shè)計

FPGA 上實現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),處理大規(guī)模圖像識別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例,針對 FPGA 上實現(xiàn) CNN 做一個可行性研究
2019-06-19 07:24:41

如何利用卷積神經(jīng)網(wǎng)絡(luò)去更好地控制巡線智能車呢

巡線智能車控制CNN網(wǎng)絡(luò)有何應(yīng)用?嵌入式單片機(jī)神經(jīng)網(wǎng)絡(luò)該怎樣去使用?如何利用卷積神經(jīng)網(wǎng)絡(luò)去更好地控制巡線智能車呢?
2021-12-21 07:47:24

如何用卷積神經(jīng)網(wǎng)絡(luò)方法去解決機(jī)器監(jiān)督學(xué)習(xí)下面的分類問題?

人工智能下面有哪些機(jī)器學(xué)習(xí)分支?如何用卷積神經(jīng)網(wǎng)絡(luò)CNN)方法去解決機(jī)器學(xué)習(xí)監(jiān)督學(xué)習(xí)下面的分類問題?
2021-06-16 08:09:03

如何移植一個CNN神經(jīng)網(wǎng)絡(luò)到FPGA?

)第二步:使用Lattice sensAI 軟件編譯已訓(xùn)練好的神經(jīng)網(wǎng)絡(luò),定點化網(wǎng)絡(luò)參數(shù)。該軟件會根據(jù)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和預(yù)設(shè)的FPGA資源進(jìn)行分析并給出性能評估報告,此外用戶還可以軟件
2020-11-26 07:46:03

成熟的無人駕駛方案離不開激光雷達(dá)

廣泛的應(yīng)用。 由于激光雷達(dá)可以形成精度高達(dá)厘米級的 3D 環(huán)境地圖, 因此 ADAS 及無人駕駛系統(tǒng)具有重要作用。激光雷達(dá)無人駕駛的作用路徑規(guī)劃,是解決無人車從起點到終點,走怎樣路徑
2017-10-23 17:51:41

百度無人駕駛車北京完成路測

。 據(jù)了解,百度無人駕駛車項目起于2013年,由百度研究院主導(dǎo)研發(fā),其技術(shù)核心是“百度汽車大腦”,包括高精度地圖、定位、感知、智能決策與控制四大模塊。百度無人駕駛車依托國際領(lǐng)先的交通場景物體識別技術(shù)和環(huán)境
2015-12-12 16:53:14

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實踐

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實踐
2020-06-14 22:21:12

請問為什么要用卷積神經(jīng)網(wǎng)絡(luò)?

為什么要用卷積神經(jīng)網(wǎng)絡(luò)
2020-06-13 13:11:39

輕量化神經(jīng)網(wǎng)絡(luò)的相關(guān)資料下載

原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類、物體檢測等機(jī)器
2021-12-14 07:35:25

非局部神經(jīng)網(wǎng)絡(luò),打造未來神經(jīng)網(wǎng)絡(luò)基本組件

時空記憶。增加了幾個非局部模塊后,我們的“非局部神經(jīng)網(wǎng)絡(luò)”結(jié)構(gòu)能比二維和三維卷積網(wǎng)絡(luò)視頻分類取得更準(zhǔn)確的結(jié)果。另外,非局部神經(jīng)網(wǎng)絡(luò)計算上也比三維卷積神經(jīng)網(wǎng)絡(luò)更加經(jīng)濟(jì)。我們 Kinetics
2018-11-12 14:52:50

卷積神經(jīng)網(wǎng)絡(luò)(CNN)的簡單介紹及代碼實現(xiàn)

卷積神經(jīng)網(wǎng)絡(luò)(CNN)的基礎(chǔ)介紹見 ,這里主要以代碼實現(xiàn)為主。 CNN是一個多層的神經(jīng)網(wǎng)絡(luò),每層由多個二維平面組成,而每個平面由多個獨立神經(jīng)元組成。 以MNIST作為數(shù)據(jù)庫,仿照LeNet-5
2017-11-15 12:27:3918949

【科普】卷積神經(jīng)網(wǎng)絡(luò)(CNN)基礎(chǔ)介紹

卷積神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)進(jìn)行介紹,主要內(nèi)容包括卷積神經(jīng)網(wǎng)絡(luò)概念、卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)、卷積神經(jīng)網(wǎng)絡(luò)求解、卷積神經(jīng)網(wǎng)絡(luò)LeNet-5結(jié)構(gòu)分析、卷積神經(jīng)網(wǎng)絡(luò)注意事項。一、卷積神經(jīng)網(wǎng)絡(luò)概念 上世紀(jì)60年代
2017-11-16 01:00:0210692

卷積神經(jīng)網(wǎng)絡(luò)檢測臉部關(guān)鍵點的教程之卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練與數(shù)據(jù)擴(kuò)充

上一次我們用了單隱層的神經(jīng)網(wǎng)絡(luò),效果還可以改善,這一次就使用CNN卷積神經(jīng)網(wǎng)絡(luò) 上圖演示了卷積操作 LeNet-5式的卷積神經(jīng)網(wǎng)絡(luò),是計算機(jī)視覺領(lǐng)域近期取得的巨大突破的核心。卷積層和之前的全連接
2017-11-16 11:45:072012

卷積神經(jīng)網(wǎng)絡(luò)CNN圖解

之前在網(wǎng)上搜索了好多好多關(guān)于CNN的文章,由于網(wǎng)絡(luò)上的文章很多斷章取義或者描述不清晰,看了很多youtobe上面的教學(xué)視頻還是沒有弄懂,最后經(jīng)過痛苦漫長的煎熬之后對于神經(jīng)網(wǎng)絡(luò)卷積有了粗淺的了解
2017-11-16 13:18:4056168

卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析-LeNet

對于神經(jīng)網(wǎng)絡(luò)卷積有了粗淺的了解,關(guān)于CNN 卷積神經(jīng)網(wǎng)絡(luò),需要總結(jié)深入的知識有很多:人工神經(jīng)網(wǎng)絡(luò) ANN卷積神經(jīng)網(wǎng)絡(luò)CNN 卷積神經(jīng)網(wǎng)絡(luò)CNN-BP算法卷積神經(jīng)網(wǎng)絡(luò)CNN-caffe應(yīng)用卷積神經(jīng)網(wǎng)絡(luò)CNN-LetNet分析 LetNet網(wǎng)絡(luò).
2017-11-16 13:28:012562

3D卷積神經(jīng)網(wǎng)絡(luò)的手勢識別

傳統(tǒng)2D卷積神經(jīng)網(wǎng)絡(luò)對于視頻連續(xù)幀圖像的特征提取容易丟失目標(biāo)時間軸上的運(yùn)動信息,導(dǎo)致識別準(zhǔn)確度較低。為此,提出一種基于多列深度3D卷積神經(jīng)網(wǎng)絡(luò)3D CNN)的手勢識別方法。采用3D卷積核對
2018-01-30 13:59:192

卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析 - LeNet

之前在網(wǎng)上搜索了好多好多關(guān)于CNN的文章,由于網(wǎng)絡(luò)上的文章很多斷章取義或者描述不清晰,看了很多youtobe上面的教學(xué)視頻還是沒有弄懂,最后經(jīng)過痛苦漫長的煎熬之后對于神經(jīng)網(wǎng)絡(luò)卷積有了粗淺的了解
2018-10-02 07:41:01544

神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的原理

卷積神經(jīng)網(wǎng)絡(luò) (Convolutional Neural Network, CNN) 是一種源于人工神經(jīng)網(wǎng)絡(luò)(Neural Network, NN)的深度機(jī)器學(xué)習(xí)方法,近年來在圖像識別領(lǐng)域取得了巨大
2021-03-25 09:45:217

MATLAB實現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN的源代碼

MATLAB實現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN的源代碼
2021-04-21 10:15:3616

干貨速來!詳析卷積神經(jīng)網(wǎng)絡(luò)(CNN)的特性和應(yīng)用

前文《 卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機(jī)器學(xué)習(xí)? 》中,我們比較了在微控制器中運(yùn)行經(jīng)典線性規(guī)劃程序與運(yùn)行CNN的區(qū)別,并展示了CNN的優(yōu)勢。我們還探討了CIFAR網(wǎng)絡(luò),該網(wǎng)絡(luò)可以對圖像中的貓、房子或自行車
2023-03-27 22:50:02556

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30806

卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)

Learning)的應(yīng)用,通過運(yùn)用多層卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),可以自動地進(jìn)行特征提取和學(xué)習(xí),進(jìn)而實現(xiàn)圖像分類、物體識別、目標(biāo)檢測、語音識別和自然語言翻譯等任務(wù)。 卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)包括:輸入層、卷積層、激活函數(shù)、池化層和全連接層。 在CNN中,輸入層通常是代表圖像的矩陣或向量,而卷積層是卷積
2023-08-17 16:30:35804

卷積神經(jīng)網(wǎng)絡(luò)python代碼

卷積神經(jīng)網(wǎng)絡(luò)python代碼 ; 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種可以在圖像處理和語音識別等領(lǐng)域中很好地應(yīng)用的神經(jīng)網(wǎng)絡(luò)。它的原理是通過不斷
2023-08-21 16:41:35615

python卷積神經(jīng)網(wǎng)絡(luò)cnn的訓(xùn)練算法

python卷積神經(jīng)網(wǎng)絡(luò)cnn的訓(xùn)練算法? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)一直是深度學(xué)習(xí)領(lǐng)域重要的應(yīng)用之一,被廣泛應(yīng)用于圖像、視頻、語音等領(lǐng)域
2023-08-21 16:41:37859

卷積神經(jīng)網(wǎng)絡(luò)詳解 卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層及各層功能

多維數(shù)組而設(shè)計的神經(jīng)網(wǎng)絡(luò)。CNN不僅廣泛應(yīng)用于計算機(jī)視覺領(lǐng)域,還在自然語言處理、語音識別和游戲等領(lǐng)域有廣泛應(yīng)用。下文將詳細(xì)地介紹CNN的各層及其功能。 1.卷積層(Convolutional
2023-08-21 16:41:404399

卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)通常用來處理什么

卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)通常用來處理什么 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種在神經(jīng)網(wǎng)絡(luò)領(lǐng)域內(nèi)廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型。相較于傳統(tǒng)
2023-08-21 16:41:453487

卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點 cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點

卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點 cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network,CNN)是一種基于深度學(xué)習(xí)技術(shù)的神經(jīng)網(wǎng)絡(luò),由于其出色的性能
2023-08-21 16:41:481659

卷積神經(jīng)網(wǎng)絡(luò)模型有哪些?卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層內(nèi)容?

卷積神經(jīng)網(wǎng)絡(luò)模型有哪些?卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層內(nèi)容? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域中最廣泛應(yīng)用的模型之一,主要應(yīng)用于圖像、語音
2023-08-21 16:41:521305

卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋

。CNN可以幫助人們實現(xiàn)許多有趣的任務(wù),如圖像分類、物體檢測、語音識別、自然語言處理和視頻分析等。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的工作原理并用通俗易懂的語言解釋。 1.概述 卷積神經(jīng)網(wǎng)絡(luò)是一個由神經(jīng)元構(gòu)成的深度神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。在卷積神經(jīng)網(wǎng)絡(luò)中,
2023-08-21 16:49:242216

卷積神經(jīng)網(wǎng)絡(luò)如何識別圖像

為多層卷積層、池化層和全連接層。CNN模型通過訓(xùn)練識別并學(xué)習(xí)高度復(fù)雜的圖像模式,對于識別物體和進(jìn)行圖像分類等任務(wù)有著非常優(yōu)越的表現(xiàn)。本文將會詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)如何識別圖像,主要包括以下幾個方面: 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和原理 2. 卷積神經(jīng)網(wǎng)絡(luò)模型的訓(xùn)練過程 3.
2023-08-21 16:49:271284

卷積神經(jīng)網(wǎng)絡(luò)三大特點

卷積神經(jīng)網(wǎng)絡(luò)三大特點? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)模型,其具有三大特點:局部感知、參數(shù)共享和下采樣。 一、局部感知 卷積神經(jīng)網(wǎng)絡(luò)
2023-08-21 16:49:323045

卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展 卷積神經(jīng)網(wǎng)絡(luò)三大特點

卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展歷程 卷積神經(jīng)網(wǎng)絡(luò)三大特點? 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域
2023-08-21 16:49:391136

卷積神經(jīng)網(wǎng)絡(luò)基本結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)主要包括什么

卷積神經(jīng)網(wǎng)絡(luò)基本結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)主要包括什么 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛用于圖像識別、自然語言處理、語音識別等領(lǐng)域
2023-08-21 16:57:193561

卷積神經(jīng)網(wǎng)絡(luò)層級結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)卷積層講解

卷積神經(jīng)網(wǎng)絡(luò)層級結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)卷積層講解 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)模型,在許多視覺相關(guān)的任務(wù)中表現(xiàn)出色,如圖
2023-08-21 16:49:423757

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于圖像分類、物體識別、語音識別等領(lǐng)域
2023-08-21 16:49:461229

卷積神經(jīng)網(wǎng)絡(luò)算法原理

卷積神經(jīng)網(wǎng)絡(luò)算法原理? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)(Deep Learning)的模型,它能夠自動地從圖片、音頻、文本等數(shù)據(jù)中提
2023-08-21 16:49:54690

卷積神經(jīng)網(wǎng)絡(luò)算法有哪些?

卷積神經(jīng)網(wǎng)絡(luò)算法有哪些?? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN) 是一種基于多層感知器(multilayer perceptron, MLP)的深度學(xué)習(xí)
2023-08-21 16:50:01977

卷積神經(jīng)網(wǎng)絡(luò)算法三大類

卷積神經(jīng)網(wǎng)絡(luò)算法三大類 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種常用的人工神經(jīng)網(wǎng)絡(luò),它的主要應(yīng)用領(lǐng)域是圖像識別和計算機(jī)視覺方面。CNN通過卷積
2023-08-21 16:50:07755

卷積神經(jīng)網(wǎng)絡(luò)算法代碼matlab

卷積神經(jīng)網(wǎng)絡(luò)算法代碼matlab 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)網(wǎng)絡(luò)模型,其特點是具有卷積層(Convolutional Layer
2023-08-21 16:50:11745

卷積神經(jīng)網(wǎng)絡(luò)算法流程 卷積神經(jīng)網(wǎng)絡(luò)模型工作流程

,其獨特的卷積結(jié)構(gòu)可以有效地提取圖像和音頻等信息的特征,以用于分類、識別等任務(wù)。本文將從卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)、前向傳播算法、反向傳播算法等方面探討其算法流程與模型工作流程,并介紹其在圖像分類、物體檢測和人臉識別等領(lǐng)域中的應(yīng)用。 一、卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)
2023-08-21 16:50:191315

常見的卷積神經(jīng)網(wǎng)絡(luò)模型 典型的卷積神經(jīng)網(wǎng)絡(luò)模型

常見的卷積神經(jīng)網(wǎng)絡(luò)模型 典型的卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是深度學(xué)習(xí)中最流行的模型之一,其結(jié)構(gòu)靈活,處理圖像、音頻、自然語言
2023-08-21 17:11:411641

cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型

cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),最初被廣泛應(yīng)用于計算機(jī)
2023-08-21 17:11:47680

卷積神經(jīng)網(wǎng)絡(luò)一共有幾層 卷積神經(jīng)網(wǎng)絡(luò)模型三層

神經(jīng)網(wǎng)絡(luò),經(jīng)過多層卷積、池化、非線性變換等復(fù)雜計算處理,可以從圖像、音頻、文本等數(shù)據(jù)中提取有用的特征。下文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和原理。 CNN 的層級結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)一共有三層,分別是輸入層、隱藏層和輸出層。隱藏層包括卷積層、池化層和全連接層。其中,隱藏
2023-08-21 17:11:533320

卷積神經(jīng)網(wǎng)絡(luò)模型的優(yōu)缺點

卷積神經(jīng)網(wǎng)絡(luò)模型的優(yōu)缺點? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種從圖像、視頻、聲音和一系列多維信號中進(jìn)行學(xué)習(xí)的深度學(xué)習(xí)模型。它在計算機(jī)視覺、語音識別
2023-08-21 17:15:191881

卷積神經(jīng)網(wǎng)絡(luò)主要包括哪些 卷積神經(jīng)網(wǎng)絡(luò)組成部分

卷積神經(jīng)網(wǎng)絡(luò)主要包括哪些 卷積神經(jīng)網(wǎng)絡(luò)組成部分 卷積神經(jīng)網(wǎng)絡(luò)CNN)是一類廣泛應(yīng)用于計算機(jī)視覺、自然語言處理等領(lǐng)域的人工神經(jīng)網(wǎng)絡(luò)。它具有良好的空間特征學(xué)習(xí)能力,能夠處理具有二維或三維形狀的輸入數(shù)據(jù)
2023-08-21 17:15:22938

cnn卷積神經(jīng)網(wǎng)絡(luò)原理 cnn卷積神經(jīng)網(wǎng)絡(luò)的特點是什么

cnn卷積神經(jīng)網(wǎng)絡(luò)原理 cnn卷積神經(jīng)網(wǎng)絡(luò)的特點是什么? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種特殊的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),主要應(yīng)用于圖像處理和計算機(jī)視覺領(lǐng)域
2023-08-21 17:15:251027

cnn卷積神經(jīng)網(wǎng)絡(luò)算法 cnn卷積神經(jīng)網(wǎng)絡(luò)模型

中,CNN已成為圖像識別和語音識別領(lǐng)域的熱門算法,廣泛應(yīng)用于自動駕駛、醫(yī)學(xué)診斷、物體檢測等方面。 CNN的基本原理是利用卷積層提取圖像的特征,通過池化層降低特征的維度,然后通過全連接層將特征映射到輸出,實現(xiàn)分類或回歸任務(wù)。每個卷積
2023-08-21 17:15:57941

cnn卷積神經(jīng)網(wǎng)絡(luò)matlab代碼

cnn卷積神經(jīng)網(wǎng)絡(luò)matlab代碼? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是深度學(xué)習(xí)中一種常用的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它是通過卷積層、池化層和全連接層等組合而成
2023-08-21 17:15:59798

cnn卷積神經(jīng)網(wǎng)絡(luò)簡介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼

cnn卷積神經(jīng)網(wǎng)絡(luò)簡介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是目前深度學(xué)習(xí)領(lǐng)域中應(yīng)用廣泛的一種神經(jīng)網(wǎng)絡(luò)模型。CNN的出現(xiàn)
2023-08-21 17:16:131617

卷積神經(jīng)網(wǎng)絡(luò)的定義、結(jié)構(gòu)和發(fā)展歷史

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種非常重要的機(jī)器學(xué)習(xí)算法,主要應(yīng)用于圖像處理領(lǐng)域,用于圖像分類、目標(biāo)識別、物體檢測等任務(wù)。該算法是深度學(xué)習(xí)領(lǐng)域的一個重要分支。下面具體介紹卷積神經(jīng)網(wǎng)絡(luò)的定義、結(jié)構(gòu)和發(fā)展歷史。
2023-08-21 17:26:04406

什么是卷積神經(jīng)網(wǎng)絡(luò)?為什么需要卷積神經(jīng)網(wǎng)絡(luò)

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于處理具有類似網(wǎng)格結(jié)構(gòu)的數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò)。它廣泛用于圖像和視頻識別、文本分類等領(lǐng)域。CNN可以自動從訓(xùn)練數(shù)據(jù)中學(xué)習(xí)出合適的特征,并以此對新輸入的數(shù)據(jù)進(jìn)行分類或回歸等操作。
2023-08-22 18:20:371132

什么是卷積神經(jīng)網(wǎng)絡(luò)?如何MATLAB實現(xiàn)CNN?

卷積神經(jīng)網(wǎng)絡(luò)CNN 或 ConvNet)是一種直接從數(shù)據(jù)中學(xué)習(xí)的深度學(xué)習(xí)網(wǎng)絡(luò)架構(gòu)。 CNN 特別適合在圖像中尋找模式以識別對象、類和類別。它們也能很好地對音頻、時間序列和信號數(shù)據(jù)進(jìn)行分類。
2023-10-12 12:41:49422

卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點

卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)模型,在圖像識別、語音識別、自然語言處理等領(lǐng)域有著廣泛的應(yīng)用。相比
2023-12-07 15:37:252279

已全部加載完成