電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>電子技術(shù)應(yīng)用>實(shí)驗(yàn)中心>編程實(shí)驗(yàn)>代碼教程 - 如何估算深度神經(jīng)網(wǎng)絡(luò)的最優(yōu)學(xué)習(xí)率(附代碼教程)

代碼教程 - 如何估算深度神經(jīng)網(wǎng)絡(luò)的最優(yōu)學(xué)習(xí)率(附代碼教程)

上一頁(yè)12全文
收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

淺析深度神經(jīng)網(wǎng)絡(luò)壓縮與加速技術(shù)

深度神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的一種框架,它是一種具備至少一個(gè)隱層的神經(jīng)網(wǎng)絡(luò)。與淺層神經(jīng)網(wǎng)絡(luò)類似
2023-10-11 09:14:33136

深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)架構(gòu)解析

感知器是所有神經(jīng)網(wǎng)絡(luò)中最基本的,也是更復(fù)雜的神經(jīng)網(wǎng)絡(luò)的基本組成部分。它只連接一個(gè)輸入神經(jīng)元和一個(gè)輸出神經(jīng)元。
2023-08-31 16:55:50293

人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別? 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)是一種模仿人腦神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)和功能的計(jì)算模型,也被稱為神經(jīng)網(wǎng)絡(luò)(Neural
2023-08-22 16:45:18707

cnn卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼

cnn卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是目前深度學(xué)習(xí)領(lǐng)域中應(yīng)用廣泛的一種神經(jīng)網(wǎng)絡(luò)模型。CNN的出現(xiàn)
2023-08-21 17:16:13291

cnn卷積神經(jīng)網(wǎng)絡(luò)matlab代碼

cnn卷積神經(jīng)網(wǎng)絡(luò)matlab代碼? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是深度學(xué)習(xí)中一種常用的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它是通過卷積層、池化層和全連接層等組合而成
2023-08-21 17:15:59290

卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對(duì)大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測(cè)和分類。卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:36529

卷積神經(jīng)網(wǎng)絡(luò)是什么?卷積神經(jīng)網(wǎng)絡(luò)的工作原理和應(yīng)用

  卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),主要用于圖像和視頻的識(shí)別、分類和預(yù)測(cè),是計(jì)算機(jī)視覺領(lǐng)域中應(yīng)用最廣泛的深度學(xué)習(xí)算法之一。該網(wǎng)絡(luò)模型可以自動(dòng)從原始數(shù)據(jù)中學(xué)習(xí)有用的特征,并將其映射到相應(yīng)的類別。
2023-08-21 17:03:46440

卷積神經(jīng)網(wǎng)絡(luò)算法代碼matlab

卷積神經(jīng)網(wǎng)絡(luò)算法代碼matlab 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)網(wǎng)絡(luò)模型,其特點(diǎn)是具有卷積層(Convolutional Layer
2023-08-21 16:50:11301

卷積神經(jīng)網(wǎng)絡(luò)算法比其他算法好嗎

卷積神經(jīng)網(wǎng)絡(luò)算法比其他算法好嗎 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)是一種用于圖像識(shí)別和處理等領(lǐng)域的深度學(xué)習(xí)算法。相對(duì)于傳統(tǒng)的圖像識(shí)別算法,如SIFT
2023-08-21 16:49:51186

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法

深度學(xué)習(xí)算法。CNN模型最早被提出是為了處理圖像,其模型結(jié)構(gòu)中包含卷積層、池化層和全連接層等關(guān)鍵技術(shù),經(jīng)過多個(gè)卷積層和池化層的處理,CNN可以提取出圖像中的特征信息,從而對(duì)圖像進(jìn)行分類。 一、卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)算法最早起源于圖像處理領(lǐng)域。它是一種深
2023-08-21 16:49:46276

卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展 卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)

卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展歷程 卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域
2023-08-21 16:49:39262

卷積神經(jīng)網(wǎng)絡(luò)如何識(shí)別圖像

卷積神經(jīng)網(wǎng)絡(luò)如何識(shí)別圖像? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)由于其出色的圖像識(shí)別能力而成為深度學(xué)習(xí)的重要組成部分。CNN是一種深度神經(jīng)網(wǎng)絡(luò),其結(jié)構(gòu)為
2023-08-21 16:49:27484

卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋

卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種眾所周知的深度學(xué)習(xí)算法,是人工智能領(lǐng)域中最受歡迎的技術(shù)之一
2023-08-21 16:49:24636

卷積神經(jīng)網(wǎng)絡(luò)模型有哪些?卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層內(nèi)容?

卷積神經(jīng)網(wǎng)絡(luò)模型有哪些?卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層內(nèi)容? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域中最廣泛應(yīng)用的模型之一,主要應(yīng)用于圖像、語(yǔ)音
2023-08-21 16:41:52374

卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn) cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)

卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn) cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network,CNN)是一種基于深度學(xué)習(xí)技術(shù)的神經(jīng)網(wǎng)絡(luò),由于其出色的性能
2023-08-21 16:41:48502

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30256

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來源:青榴實(shí)驗(yàn)室1、引子深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語(yǔ)音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)
2023-05-17 09:59:19551

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來源:青榴實(shí)驗(yàn)室 1、引子 深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語(yǔ)音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。 在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層
2023-05-15 14:20:01258

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

源程序  5.3 Gaussian機(jī)  第6章自組織神經(jīng)網(wǎng)絡(luò)  6.1 競(jìng)爭(zhēng)型學(xué)習(xí)  6.2 自適應(yīng)共振理論(ART)模型  6.3 自組織特征映射(SOM)模型  6.4 CPN模型  第7章 聯(lián)想
2012-03-20 11:32:43

什么是神經(jīng)網(wǎng)絡(luò)?什么是卷積神經(jīng)網(wǎng)絡(luò)?

在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識(shí)。就目前而言,神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)。
2023-02-23 09:14:441224

深度學(xué)習(xí)與圖神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)分享:CNN經(jīng)典網(wǎng)絡(luò)之-ResNet

深度學(xué)習(xí)與圖神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)分享:CNN 經(jīng)典網(wǎng)絡(luò)之-ResNet resnet 又叫深度殘差網(wǎng)絡(luò) 圖像識(shí)別準(zhǔn)確很高,主要作者是國(guó)人哦 深度網(wǎng)絡(luò)的退化問題 深度網(wǎng)絡(luò)難以訓(xùn)練,梯度消失,梯度爆炸
2022-10-12 09:54:42523

深度學(xué)習(xí)與圖神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)分享:Transformer

在過去的幾年中,神經(jīng)網(wǎng)絡(luò)的興起與應(yīng)用成功推動(dòng)了模式識(shí)別和數(shù)據(jù)挖掘的研究。許多曾經(jīng)嚴(yán)重依賴于手工提取特征的機(jī)器學(xué)習(xí)任務(wù)(如目標(biāo)檢測(cè)、機(jī)器翻譯和語(yǔ)音識(shí)別),如今都已被各種端到端的深度學(xué)習(xí)范式(例如卷積
2022-09-22 10:16:34837

深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)和函數(shù)

深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)子集,它使用神經(jīng)網(wǎng)絡(luò)來執(zhí)行學(xué)習(xí)和預(yù)測(cè)。深度學(xué)習(xí)在各種任務(wù)中都表現(xiàn)出了驚人的表現(xiàn),無論是文本、時(shí)間序列還是計(jì)算機(jī)視覺。
2022-04-07 10:17:051186

NVIDIA GPU加快深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練和推斷

深度學(xué)習(xí)是推動(dòng)當(dāng)前人工智能大趨勢(shì)的關(guān)鍵技術(shù)。在 MATLAB 中可以實(shí)現(xiàn)深度學(xué)習(xí)的數(shù)據(jù)準(zhǔn)備、網(wǎng)絡(luò)設(shè)計(jì)、訓(xùn)練和部署全流程開發(fā)和應(yīng)用。聯(lián)合高性能 NVIDIA GPU 加快深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練和推斷。
2022-02-18 13:31:441525

深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)層級(jí)分解綜述

隨著深度學(xué)習(xí)的不斷發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNN)在目標(biāo)檢測(cè)與圖像分類中受到研究者的廣泛關(guān)注。CNN從 Lenet5網(wǎng)絡(luò)發(fā)展到深度殘差網(wǎng)絡(luò),其層數(shù)不斷增加?;?b style="color: red">神經(jīng)網(wǎng)絡(luò)中“深度”的含義,在確保感受野相同
2021-05-19 16:11:005

3小時(shí)學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)課件下載

3小時(shí)學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)課件下載
2021-04-19 09:36:559

深度神經(jīng)網(wǎng)絡(luò)模型的壓縮和優(yōu)化綜述

近年來,隨著深度學(xué)習(xí)的飛速發(fā)展,深度神經(jīng)網(wǎng)絡(luò)受到了越來越多的關(guān)注,在許多應(yīng)用領(lǐng)域取得了顯著效果。通常,在較高的計(jì)算量下,深度神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)能力隨著網(wǎng)絡(luò)深度的増加而不斷提高,因此深度神經(jīng)網(wǎng)絡(luò)在大型
2021-04-12 10:26:5920

綜述深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)模型應(yīng)用及發(fā)展

深度學(xué)習(xí)是機(jī)器學(xué)習(xí)和人工智能研究的最新趨勢(shì),作為一個(gè)十余年來快速發(fā)展的嶄新領(lǐng)域,越來越受到研究者的關(guān)注。卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型是深度學(xué)習(xí)模型中最重要的一種經(jīng)典結(jié)構(gòu),其性能在近年來深度學(xué)習(xí)任務(wù)上
2021-04-02 15:29:0420

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)基礎(chǔ)知識(shí)

神經(jīng)網(wǎng)絡(luò)絡(luò)是有史以來發(fā)明的最優(yōu)美的編程范式之?。在傳統(tǒng)的編程法中,我們告訴計(jì)算機(jī)做什么,把?問題分成許多?的、精確定義的任務(wù),計(jì)算機(jī)可以很容易地執(zhí)?。相?之下,在神經(jīng)?絡(luò)中,我們不告訴計(jì)算機(jī)如何解決我們的問題。相反,它從觀測(cè)數(shù)據(jù)中學(xué)習(xí),找出它??的解決問題的?法。
2021-03-26 09:55:483

神經(jīng)網(wǎng)絡(luò)的方法學(xué)習(xí)課件免費(fèi)下載

  本文檔的主要內(nèi)容詳細(xì)介紹的是神經(jīng)網(wǎng)絡(luò)的方法學(xué)習(xí)課件免費(fèi)下載包括了:神經(jīng)網(wǎng)絡(luò)發(fā)展史,神經(jīng)網(wǎng)絡(luò)理論基礎(chǔ),深度神經(jīng)網(wǎng)絡(luò)進(jìn)展,發(fā)展趨勢(shì)與展望
2021-03-11 10:10:3716

基于深度神經(jīng)網(wǎng)絡(luò)的文本分類分析

卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)、注意力機(jī)制等方法在文本分類中的應(yīng)用和發(fā)展,分析多種典型分類方法的特點(diǎn)和性能,從準(zhǔn)確和運(yùn)行時(shí)間方面對(duì)基礎(chǔ)網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)行比較,表明深度神經(jīng)網(wǎng)絡(luò)較傳統(tǒng)機(jī)器學(xué)習(xí)方法在用于文本分類時(shí)更具優(yōu)
2021-03-10 16:56:5636

神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)控制的學(xué)習(xí)課件免費(fèi)下載

本文檔的主要內(nèi)容詳細(xì)介紹的是神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)控制的學(xué)習(xí)課件免費(fèi)下載包括了:1生物神經(jīng)元模型,2人工神經(jīng)元模型,3人工神經(jīng)網(wǎng)絡(luò)模型,4神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)方法
2021-01-20 11:20:057

卷積神經(jīng)網(wǎng)絡(luò)的發(fā)展歷程及與深度學(xué)習(xí)的差異

1986年Rumelhart等人提出了人工神經(jīng)網(wǎng)絡(luò)的反向傳播算法,掀起了神經(jīng)網(wǎng)絡(luò)在機(jī)器學(xué)習(xí)中的熱潮,神經(jīng)網(wǎng)絡(luò)中存在大量的參數(shù),存在容易發(fā)生過擬合、訓(xùn)練時(shí)間長(zhǎng)的缺點(diǎn),但是對(duì)比Boosting
2020-08-24 15:57:525030

邊緣計(jì)算中深度神經(jīng)網(wǎng)絡(luò)剪枝壓縮的研究

深度神經(jīng)網(wǎng)絡(luò)與其他很多機(jī)器學(xué)習(xí)模型一樣,可分為訓(xùn)練和推理兩個(gè)階段。訓(xùn)練階段根據(jù)數(shù)據(jù)學(xué)習(xí)模型中的參數(shù)(對(duì)神經(jīng)網(wǎng)絡(luò)來說主要是網(wǎng)絡(luò)中的權(quán)重);推理階段將新數(shù)據(jù)輸入模型,經(jīng)過計(jì)算得出結(jié)果。
2020-03-27 15:50:172576

神經(jīng)網(wǎng)絡(luò)的復(fù)習(xí)資料免費(fèi)下載

深度學(xué)習(xí)(DL)是機(jī)器學(xué)習(xí)中一種基于對(duì)數(shù)據(jù)進(jìn)行表征學(xué)習(xí)的方法,是一種能夠模擬出人腦的神經(jīng)結(jié)構(gòu)的機(jī)器學(xué)習(xí)方法。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究。而人工神經(jīng)網(wǎng)絡(luò)ANN(Artificial
2019-09-20 08:00:001

如何提升神經(jīng)網(wǎng)絡(luò)性能

神經(jīng)網(wǎng)絡(luò)是一種在很多用例中能夠提供最優(yōu)準(zhǔn)確的機(jī)器學(xué)習(xí)算法。但是,很多時(shí)候我們構(gòu)建的神經(jīng)網(wǎng)絡(luò)的準(zhǔn)確可能無法令人滿意,或者無法讓我們?cè)跀?shù)據(jù)科學(xué)競(jìng)賽中拿到領(lǐng)先名次。
2019-05-02 17:10:001910

快速了解神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的教程資料免費(fèi)下載

本文檔的詳細(xì)介紹的是快速了解神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的教程資料免費(fèi)下載主要內(nèi)容包括了:機(jī)器學(xué)習(xí)概述,線性模型,前饋神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò),循環(huán)神經(jīng)網(wǎng)絡(luò),網(wǎng)絡(luò)優(yōu)化與正則化,記憶與注意力機(jī)制,無監(jiān)督學(xué)習(xí),概率圖模型,玻爾茲曼機(jī),深度信念網(wǎng)絡(luò),深度生成模型,深度強(qiáng)化學(xué)習(xí)
2019-02-11 08:00:0025

新書《解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐》試讀

我們知道,深度神經(jīng)網(wǎng)絡(luò)模型復(fù)雜的解空間中存在非常多的局部最優(yōu)解,但經(jīng)典批處理隨機(jī)梯度下降法(mini-batch SGD)只能讓網(wǎng)絡(luò)模型收斂到其中一個(gè)局部最優(yōu)解。網(wǎng)絡(luò)“快照”集成法(snapshot
2018-11-10 10:23:384363

深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)是什么樣的?

怎樣理解非線性變換和多層網(wǎng)絡(luò)后的線性可分,神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)就是學(xué)習(xí)如何利用矩陣的線性變換加激活函數(shù)的非線性變換。
2018-10-23 14:44:213596

【人工神經(jīng)網(wǎng)絡(luò)基礎(chǔ)】為什么神經(jīng)網(wǎng)絡(luò)選擇了“深度”?

由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會(huì)覺得兩者沒有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01485

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》中文版電子教材免費(fèi)下載

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》是一本免費(fèi)的在線書。本書會(huì)教會(huì)你: ? 神經(jīng)網(wǎng)絡(luò),一種美妙的受生物學(xué)啟發(fā)的編程范式,可以讓計(jì)算機(jī)從觀測(cè)數(shù)據(jù)中進(jìn)行學(xué)習(xí) ? 深度學(xué)習(xí),一個(gè)強(qiáng)有力的用于神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)的眾多技術(shù)的集合
2018-08-02 17:47:3173

三種典型的神經(jīng)網(wǎng)絡(luò)以及深度學(xué)習(xí)中的正則化方法應(yīng)用于無人駕駛

在前幾十年,神經(jīng)網(wǎng)絡(luò)并沒有受到人們的重視,直到深度學(xué)習(xí)的出現(xiàn),人們利用深度學(xué)習(xí)解決了不少實(shí)際問題(即一些落地性質(zhì)的商業(yè)應(yīng)用),神經(jīng)網(wǎng)絡(luò)才成為學(xué)界和工業(yè)界關(guān)注的一個(gè)焦點(diǎn)。本文以盡可能直白,簡(jiǎn)單的方式介紹深度學(xué)習(xí)中三種典型的神經(jīng)網(wǎng)絡(luò)以及深度學(xué)習(xí)中的正則化方法。為后面在無人駕駛中的應(yīng)用做鋪墊。
2018-06-03 09:27:039082

帶你了解深入深度學(xué)習(xí)的核心:神經(jīng)網(wǎng)絡(luò)

深度學(xué)習(xí)和人工智能是 2017 年的熱詞;2018 年,這兩個(gè)詞愈發(fā)火熱,但也更加容易混淆。我們將深入深度學(xué)習(xí)的核心,也就是神經(jīng)網(wǎng)絡(luò)。
2018-04-02 09:47:098831

叫板谷歌,亞馬遜微軟推出深度學(xué)習(xí)庫(kù) 訓(xùn)練神經(jīng)網(wǎng)絡(luò)更加簡(jiǎn)單

據(jù)報(bào)道,亞馬遜和微軟合力推出全新的深度學(xué)習(xí)庫(kù),名字叫Gluon。此舉被認(rèn)為是在云計(jì)算市場(chǎng)上與谷歌叫板,谷歌曾通過AI生態(tài)系統(tǒng)發(fā)力云計(jì)算,強(qiáng)調(diào)自身產(chǎn)品對(duì)深度學(xué)習(xí)的強(qiáng)大支持。Gluon可以讓訓(xùn)練神經(jīng)網(wǎng)絡(luò)像開發(fā)APP一樣簡(jiǎn)單,簡(jiǎn)潔的代碼構(gòu)建神經(jīng)網(wǎng)絡(luò),而不需要犧牲性能。
2018-01-05 16:56:101899

基于遞歸神經(jīng)網(wǎng)絡(luò)和前饋神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)預(yù)測(cè)算法

蛋白質(zhì)二級(jí)結(jié)構(gòu)預(yù)測(cè)是結(jié)構(gòu)生物學(xué)中的一個(gè)重要問題。針對(duì)八類蛋白質(zhì)二級(jí)結(jié)構(gòu)預(yù)測(cè),提出了一種基于遞歸神經(jīng)網(wǎng)絡(luò)和前饋神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)預(yù)測(cè)算法。該算法通過雙向遞歸神經(jīng)網(wǎng)絡(luò)建模氨基酸間的局部和長(zhǎng)程相互作用
2017-12-03 09:41:149

AI核心動(dòng)力之深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的現(xiàn)狀及發(fā)展趨勢(shì)

深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)未來發(fā)展將出現(xiàn)兩大趨勢(shì):計(jì)算遷移和基于小樣本集的學(xué)習(xí)算法;網(wǎng)絡(luò)結(jié)構(gòu)及效率不斷優(yōu)化,面向智能終端的AI處理芯片將出現(xiàn);深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的壓縮技術(shù)也將不斷成熟。
2017-12-01 09:48:017045

深度神經(jīng)網(wǎng)絡(luò)的壓縮和正則化剖析

利用深度壓縮和DSD訓(xùn)練來提高預(yù)測(cè)精度。 深度神經(jīng)網(wǎng)絡(luò)已經(jīng)成為解決計(jì)算機(jī)視覺、語(yǔ)音識(shí)別和自然語(yǔ)言處理等機(jī)器學(xué)習(xí)任務(wù)的最先進(jìn)的技術(shù)。盡管如此,深度學(xué)習(xí)算法是計(jì)算密集型和存儲(chǔ)密集型的,這使得它難以被部署
2017-11-16 13:11:351472

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義
2017-07-20 08:58:2434

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)

微軟研究人員在深度神經(jīng)網(wǎng)絡(luò)(deep neural network)上取得突破, 使其在性能上能趕上目前最先進(jìn)的語(yǔ)音識(shí)別技術(shù)。
2016-08-17 11:54:0647

BP神經(jīng)網(wǎng)絡(luò)的電路最優(yōu)測(cè)試集的生成設(shè)計(jì)

BP神經(jīng)網(wǎng)絡(luò)的電路最優(yōu)測(cè)試集的生成設(shè)計(jì) 1 引言   人工神經(jīng)網(wǎng)絡(luò)是基于模仿生物大腦的結(jié)構(gòu)和功能而構(gòu)成的一種信息處理系統(tǒng)。國(guó)際著名 的神經(jīng)網(wǎng)絡(luò)專家Hecht N
2010-02-02 10:35:141098

基于BP神經(jīng)網(wǎng)絡(luò)的電路最優(yōu)測(cè)試集的生成設(shè)計(jì)

BP 神經(jīng)網(wǎng)絡(luò)是目前用于模擬電路故障診斷的神經(jīng)網(wǎng)絡(luò)之一。本文應(yīng)用BP 神經(jīng)網(wǎng)絡(luò)完成了實(shí)際電路最優(yōu)測(cè)試集的生成設(shè)計(jì),驗(yàn)證了基于BP 神經(jīng)網(wǎng)絡(luò)最優(yōu)測(cè)試集的生成的可行性和有
2009-12-16 16:08:339

已全部加載完成