電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>人工智能之神經(jīng)網(wǎng)絡(luò)新思路:OpenAI用線性非線性問(wèn)題

人工智能之神經(jīng)網(wǎng)絡(luò)新思路:OpenAI用線性非線性問(wèn)題

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

人工神經(jīng)網(wǎng)絡(luò)原理及下載

人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識(shí)過(guò)程而開(kāi)發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對(duì)如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過(guò)程看成是一個(gè)“網(wǎng)絡(luò)”,通過(guò)不斷地給
2008-06-19 14:40:42

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問(wèn)題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

人工神經(jīng)網(wǎng)絡(luò)相關(guān)資料

以馮·諾依曼型計(jì)算機(jī)為中心的信息處理技術(shù)的高速發(fā)展,使得計(jì)算機(jī)在當(dāng)今的信息化社會(huì)中起著十分重要的作用。但是,當(dāng)用它來(lái)解決某些人工智能問(wèn)題時(shí)卻遇到了很大的困難。 例如,一個(gè)人可以很容易地識(shí)別他人的臉孔
2023-09-27 06:13:57

人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版)

物體所作出的交互反應(yīng),是模擬人工智能的一條重要途徑。人工神經(jīng)網(wǎng)絡(luò)與人腦相似性主要表現(xiàn)在:①神經(jīng)網(wǎng)絡(luò)獲取的知識(shí)是從外界環(huán)境學(xué)習(xí)得來(lái)的;②各神經(jīng)元的連接權(quán),即突觸權(quán)值,用于儲(chǔ)存獲取的知識(shí)。神經(jīng)元是神經(jīng)網(wǎng)絡(luò)
2018-10-23 16:16:02

人工神經(jīng)網(wǎng)絡(luò)課件

人工神經(jīng)網(wǎng)絡(luò)課件
2016-06-19 10:15:48

人工智能到底 GPU?還是 FPGA?

`我思故我在 亮出你的觀點(diǎn)自從類神經(jīng)網(wǎng)絡(luò)算法可以強(qiáng)大的運(yùn)算能力加以模擬之后,強(qiáng)人工智能才開(kāi)始出現(xiàn)。即便如此,以目前 CPU 的運(yùn)算能力來(lái)講,模擬類神經(jīng)網(wǎng)絡(luò)算法的代價(jià)非常之大,于是有人想到了
2017-08-23 15:42:16

人工智能對(duì)汽車(chē)芯片設(shè)計(jì)的影響是什么

點(diǎn)擊上方“藍(lán)字”,關(guān)注我們,感謝!人工智能(AI)以及利用神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)是實(shí)現(xiàn)高級(jí)駕駛輔助系統(tǒng)(ADAS)和更高程度車(chē)輛自主性的強(qiáng)大技術(shù)。隨著人工智能研究的快速發(fā)展,設(shè)計(jì)人員正面臨激烈的競(jìng)爭(zhēng)
2021-12-17 08:17:41

人工智能算法有哪些?

的最大邊距超平面。SVM使用鉸鏈損失函數(shù)計(jì)算經(jīng)驗(yàn)風(fēng)險(xiǎn)并在求解系統(tǒng)中加入了正則化項(xiàng)以優(yōu)化結(jié)構(gòu)風(fēng)險(xiǎn),是一個(gè)具有稀疏性和穩(wěn)健性的分類器。SVM可以通過(guò)核方法進(jìn)行非線性分類,是常見(jiàn)的核學(xué)習(xí)方法之一。神經(jīng)網(wǎng)絡(luò)人工
2022-03-05 14:15:07

人工智能:超越炒作

。對(duì)于人工智能用例在當(dāng)前物聯(lián)網(wǎng)環(huán)境中變?yōu)楝F(xiàn)實(shí),必須滿足三個(gè)條件:非常大的真實(shí)數(shù)據(jù)集具有重要處理能力的硬件架構(gòu)和環(huán)境開(kāi)發(fā)新的強(qiáng)大算法和人工神經(jīng)網(wǎng)絡(luò)(ANN)以充分利用上述內(nèi)容很明顯,后兩種要求相互依賴,并且
2019-05-29 10:46:39

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

  第1章 概述  1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展  1.2 生物神經(jīng)元  1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成  第2章人工神經(jīng)網(wǎng)絡(luò)基本模型  2.1 MP模型  2.2 感知器模型  2.3 自適應(yīng)線性
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索有什么優(yōu)勢(shì)?

近年來(lái),深度學(xué)習(xí)的繁榮,尤其是神經(jīng)網(wǎng)絡(luò)的發(fā)展,顛覆了傳統(tǒng)機(jī)器學(xué)習(xí)特征工程的時(shí)代,將人工智能的浪潮推到了歷史最高點(diǎn)。然而,盡管各種神經(jīng)網(wǎng)絡(luò)模型層出不窮,但往往模型性能越高,對(duì)超參數(shù)的要求也越來(lái)越嚴(yán)格
2019-09-11 11:52:14

AI知識(shí)科普 | 從無(wú)人相信到萬(wàn)人追捧的神經(jīng)網(wǎng)絡(luò)

,神經(jīng)網(wǎng)絡(luò)之父Hiton始終堅(jiān)持計(jì)算機(jī)能夠像人類一樣思考,直覺(jué)而非規(guī)則。盡管這一觀點(diǎn)被無(wú)數(shù)人質(zhì)疑過(guò)無(wú)數(shù)次,但隨著數(shù)據(jù)的不斷增長(zhǎng)和數(shù)據(jù)挖掘技術(shù)的不斷進(jìn)步,神經(jīng)網(wǎng)絡(luò)開(kāi)始在語(yǔ)音和圖像等方面超越基于邏輯的人工智能
2018-06-05 10:11:50

MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)

MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)說(shuō)明:本文檔中所列出的函數(shù)適用于MATLAB5.3以上版本,為了簡(jiǎn)明起見(jiàn),只列出了函數(shù)名,若需要進(jìn)一步的說(shuō)明,請(qǐng)參閱MATLAB的幫助文檔。1. 網(wǎng)絡(luò)創(chuàng)建函數(shù)newp
2009-09-22 16:10:08

《移動(dòng)終端人工智能技術(shù)與應(yīng)用開(kāi)發(fā)》人工智能的發(fā)展與AI技術(shù)的進(jìn)步

人工智能打發(fā)展是算法優(yōu)先于實(shí)際應(yīng)用。近幾年隨著人工智能的不斷普及,許多深度學(xué)習(xí)算法涌現(xiàn),從最初的卷積神經(jīng)網(wǎng)絡(luò)(CNN)到機(jī)器學(xué)習(xí)算法的時(shí)代。由于應(yīng)用環(huán)境的差別衍生出不同的學(xué)習(xí)算法:線性回歸,分類與回歸樹(shù)
2023-02-17 11:00:15

【AI學(xué)習(xí)】第3篇--人工神經(jīng)網(wǎng)絡(luò)

`本篇主要介紹:人工神經(jīng)網(wǎng)絡(luò)的起源、簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)模型、更多神經(jīng)網(wǎng)絡(luò)模型、機(jī)器學(xué)習(xí)的步驟:訓(xùn)練與預(yù)測(cè)、訓(xùn)練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達(dá)訓(xùn)練流程以及AI普及化教育之路。`
2020-11-05 17:48:39

【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)

能在外界信息的基礎(chǔ)上改變內(nèi)部結(jié)構(gòu),是一種自適應(yīng)系統(tǒng),通俗的講就是具備學(xué)習(xí)功能?,F(xiàn)代神經(jīng)網(wǎng)絡(luò)是一種非線性統(tǒng)計(jì)性數(shù)據(jù)建模工具。簡(jiǎn)單來(lái)說(shuō),就是給定輸入,神經(jīng)網(wǎng)絡(luò)經(jīng)過(guò)一系列計(jì)算之后,輸出最終結(jié)果。這好比人的大腦
2019-03-03 22:10:19

【專輯精選】人工智能之神經(jīng)網(wǎng)絡(luò)教程與資料

電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個(gè)主題為一期,希望對(duì)各位有所幫助?。c(diǎn)擊標(biāo)題即可進(jìn)入頁(yè)面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門(mén)資料MATLAB神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)》深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14

不可錯(cuò)過(guò)!人工神經(jīng)網(wǎng)絡(luò)算法、PID算法、Python人工智能學(xué)習(xí)等資料包分享(附源代碼)

,是模擬人工智能的一條重要途徑。人工神經(jīng)網(wǎng)絡(luò)與人腦相似性主要表現(xiàn)在: ①神經(jīng)網(wǎng)絡(luò)獲取的知識(shí)是從外界環(huán)境學(xué)習(xí)得來(lái)的; ②各神經(jīng)元的連接權(quán),即突觸權(quán)值,用于儲(chǔ)存獲取的知識(shí)。 神經(jīng)元是神經(jīng)網(wǎng)絡(luò)的基本處理單元,它是
2023-09-13 16:41:18

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

傳感器線性校正方法的原理是什么?

、精度低?,F(xiàn)在國(guó)內(nèi)外研究人員研究了多種多項(xiàng)式擬合校正法,當(dāng)用直線擬合時(shí),擬合精度較低,通常不能滿足要求;高次曲線擬合又過(guò)于復(fù)雜,實(shí)現(xiàn)困難。近年來(lái)發(fā)展較多的是神經(jīng)網(wǎng)絡(luò)法,大都采用的是BP算法。
2019-10-30 06:30:10

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

神經(jīng)網(wǎng)絡(luò)研究的第一次浪潮。1969 年美國(guó)數(shù)學(xué)家及人工智能先驅(qū) Minsky在其著作中證 明感知器本質(zhì)上是一種線性模型[21],只能處理線性分 類問(wèn)題,最簡(jiǎn)單的異或問(wèn)題都無(wú)法正確分類,因此神 經(jīng)網(wǎng)絡(luò)的研究也
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介:什么是機(jī)器學(xué)習(xí)?

模型。第 3 部分將研究使用專用 AI 微控制器測(cè)試模型的特定例。什么是卷積神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)是系統(tǒng)或神經(jīng)元結(jié)構(gòu),使人工智能能夠更好地理解數(shù)據(jù),使其能夠解決復(fù)雜的問(wèn)題。雖然有許多網(wǎng)絡(luò)類型,但本系
2023-02-23 20:11:10

史上最全AI人工智能入門(mén)+進(jìn)階學(xué)習(xí)視頻全集(200G)【免費(fèi)領(lǐng)取】

語(yǔ)言使用,數(shù)學(xué)庫(kù)、數(shù)據(jù)結(jié)構(gòu)及相關(guān)算法,深入學(xué)習(xí)AI算法模型訓(xùn)練、分析,神經(jīng)網(wǎng)絡(luò)、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等因此,為了幫助大家更好的入門(mén)學(xué)習(xí)AI人工智能,包括:Python語(yǔ)法編程、數(shù)據(jù)結(jié)構(gòu)與算法、機(jī)器學(xué)習(xí)
2019-11-27 12:10:39

人工智能神經(jīng)網(wǎng)絡(luò)ADC設(shè)計(jì)方面各位有什么見(jiàn)解呢?

最近在看人工智能神經(jīng)網(wǎng)絡(luò)存算一體這些方面的ADC設(shè)計(jì)方向,貌似跟一般的ADC方向是一樣的,都是希望朝著低功耗高精度和高速發(fā)展,在這幾個(gè)或其他特殊的方向各位有什么見(jiàn)解呢?
2021-06-24 08:17:34

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過(guò)對(duì)系統(tǒng)性能的學(xué)習(xí)來(lái)實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于labview的BP人工神經(jīng)網(wǎng)絡(luò)曲線擬合小程序

`點(diǎn)擊學(xué)習(xí)>>《龍哥手把手教你學(xué)LabVIEW視覺(jué)設(shè)計(jì)》視頻教程LabVIEW實(shí)現(xiàn)的BP人工神經(jīng)網(wǎng)絡(luò)曲線擬合,感謝LabVIEW的矩陣運(yùn)算函數(shù),程序流程較之文本型語(yǔ)言清晰很多。[hide] [/hide]`
2011-12-13 16:41:43

如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?

如何用stm32cube.ai簡(jiǎn)化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42

如何利用SoPC實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)速度控制器?

由于時(shí)變非線性和強(qiáng)耦合的控制系統(tǒng)還沒(méi)有精確的數(shù)學(xué)模型,因而傳統(tǒng)的依賴被控對(duì)象數(shù)學(xué)模型的控制策略及其控制系統(tǒng)的封閉式結(jié)構(gòu)很難對(duì)其實(shí)施有效控制。神經(jīng)網(wǎng)絡(luò)控制能夠很好地克服系統(tǒng)中模型參數(shù)的變化和非線性
2019-08-12 06:25:35

如何利用卷積神經(jīng)網(wǎng)絡(luò)去更好地控制巡線智能車(chē)呢

巡線智能車(chē)控制中的CNN網(wǎng)絡(luò)有何應(yīng)用?嵌入式單片機(jī)中的神經(jīng)網(wǎng)絡(luò)該怎樣去使用?如何利用卷積神經(jīng)網(wǎng)絡(luò)去更好地控制巡線智能車(chē)呢?
2021-12-21 07:47:24

如何實(shí)現(xiàn)開(kāi)發(fā)嵌入式神經(jīng)網(wǎng)絡(luò)

已經(jīng)有很多關(guān)于將人工智能用于日益智能的車(chē)輛的文章。但是,您如何將在服務(wù)器群上開(kāi)發(fā)的神經(jīng)網(wǎng)絡(luò) (NN) 壓縮到量產(chǎn)汽車(chē)中資源受限的嵌入式硬件中呢?本文探討了我們應(yīng)該如何授權(quán)汽車(chē)生產(chǎn) AI 研發(fā)工程師在
2021-12-23 06:30:50

如何用卷積神經(jīng)網(wǎng)絡(luò)方法去解決機(jī)器監(jiān)督學(xué)習(xí)下面的分類問(wèn)題?

人工智能下面有哪些機(jī)器學(xué)習(xí)分支?如何用卷積神經(jīng)網(wǎng)絡(luò)(CNN)方法去解決機(jī)器學(xué)習(xí)監(jiān)督學(xué)習(xí)下面的分類問(wèn)題?
2021-06-16 08:09:03

如何解決STM32F103的AD采樣非線性問(wèn)題?

如何解決STM32F103的AD采樣非線性問(wèn)題
2022-01-27 06:25:38

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡(jiǎn)稱,是當(dāng)前的研究熱點(diǎn)之一。人腦在接受視覺(jué)感官傳來(lái)的大量圖像信息后,能迅速做出反應(yīng)
2019-08-08 06:11:30

如何采用神經(jīng)網(wǎng)絡(luò)技術(shù),對(duì)鎳鉻-鎳硅熱電偶進(jìn)行了非線性校正?

請(qǐng)問(wèn)如何采用基于虛擬儀器編程語(yǔ)言CVI編成的BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練儀對(duì)K型鎳鉻-鎳硅熱電偶的非線性進(jìn)行校正?
2021-04-08 06:55:26

容差模擬電路軟故障診斷的小波與量子神經(jīng)網(wǎng)絡(luò)方法設(shè)計(jì)

,使之能夠適用于解決模擬電路故障診斷中的容差和非線性問(wèn)題,但在軟故障實(shí)際檢測(cè)中,由于不同的分類故障之間又不可避免地存在著模糊性,即不同的分類故障可能有相同或相近的故障特征向量,而這僅僅靠神經(jīng)網(wǎng)絡(luò)的泛化
2019-07-05 08:06:02

嵌入式人工智能的相關(guān)資料分享

已經(jīng)有很多關(guān)于將人工智能用于日益智能的車(chē)輛的文章。但是,您如何將在服務(wù)器群上開(kāi)發(fā)的神經(jīng)網(wǎng)絡(luò) (NN) 壓縮到量產(chǎn)汽車(chē)中資源受限的嵌入式硬件中呢?本文探討了我們應(yīng)該如何授權(quán)汽車(chē)生產(chǎn) AI 研發(fā)工程師在
2021-11-08 07:18:10

嵌入式中的人工神經(jīng)網(wǎng)絡(luò)的相關(guān)資料分享

人工神經(jīng)網(wǎng)絡(luò)在AI中具有舉足輕重的地位,除了找到最好的神經(jīng)網(wǎng)絡(luò)模型和訓(xùn)練數(shù)據(jù)集之外,人工神經(jīng)網(wǎng)絡(luò)的另一個(gè)挑戰(zhàn)是如何在嵌入式設(shè)備上實(shí)現(xiàn)它,同時(shí)優(yōu)化性能和功率效率。 使用云計(jì)算并不總是一個(gè)選項(xiàng),尤其是當(dāng)
2021-11-09 08:06:27

應(yīng)用人工神經(jīng)網(wǎng)絡(luò)模擬污水生物處理

應(yīng)用人工神經(jīng)網(wǎng)絡(luò)模擬污水生物處理(1.浙江工業(yè)大學(xué)建筑工程學(xué)院, 杭州 310014; 2.鎮(zhèn)江水工業(yè)公司排水管理處,鎮(zhèn)江 212003)摘要:針對(duì)復(fù)雜的非線性污水生物處理過(guò)程,開(kāi)發(fā)了徑向基函數(shù)的人工
2009-08-08 09:56:00

怎么解決人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問(wèn)題

本文提出了一個(gè)基于FPGA 的信息處理的實(shí)例:一個(gè)簡(jiǎn)單的人工神經(jīng)網(wǎng)絡(luò)應(yīng)用Verilog 語(yǔ)言描述,該數(shù)據(jù)流采用模塊化的程序設(shè)計(jì),并考慮了模塊間數(shù)據(jù)傳輸信號(hào)同 步的問(wèn)題,有效地解決了人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問(wèn)題。
2021-05-06 07:22:07

怎么解決LVDT定位傳感器中的非線性問(wèn)題

如何糾正線性可變差分變壓器定位傳感器中非線性問(wèn)題?如何從高頻率傳感器的輸出提取振幅信息?數(shù)字異步振幅解調(diào)技術(shù)有哪幾種分類?如何有效解決信號(hào)非線性問(wèn)題?
2021-04-13 07:01:25

怎么設(shè)計(jì)ARM與神經(jīng)網(wǎng)絡(luò)處理器的通信方案?

人工神經(jīng)網(wǎng)絡(luò)在很多領(lǐng)域得到了很好的應(yīng)用,尤其是具有分布存儲(chǔ)、并行處理、自學(xué)習(xí)、自組織以及非線性映射等特點(diǎn)的網(wǎng)絡(luò)應(yīng)用更加廣泛。嵌入式便攜設(shè)備也越來(lái)越多地得到應(yīng)用,多數(shù)是基于ARM內(nèi)核及現(xiàn)場(chǎng)可編程門(mén)陣列
2019-09-20 06:15:20

未來(lái)的人工智能技術(shù)趨勢(shì)是什么?

隨著Google、Microsoft和Facebook等巨頭的大力投入,深度學(xué)習(xí)正在超越機(jī)器學(xué)習(xí),人工智能來(lái)勢(shì)兇猛。那么,如今人工智能最熱門(mén)的技術(shù)趨勢(shì)是什么?黑匣認(rèn)為,復(fù)雜神經(jīng)網(wǎng)絡(luò)、LSTMs(長(zhǎng)短
2015-12-23 14:21:58

機(jī)器學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)參數(shù)的代價(jià)函數(shù)

吳恩達(dá)機(jī)器學(xué)習(xí)筆記之神經(jīng)網(wǎng)絡(luò)參數(shù)的反向傳播算法
2019-05-22 15:11:21

求大神給一個(gè)人工神經(jīng)網(wǎng)絡(luò)與遺傳算法的matlab源代碼

求大神給一個(gè)人工神經(jīng)網(wǎng)絡(luò)與遺傳算法的源代碼。
2016-04-19 17:15:29

粒子群優(yōu)化模糊神經(jīng)網(wǎng)絡(luò)在語(yǔ)音識(shí)別中的應(yīng)用

的研究具有重要意義.模糊神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)和模糊系統(tǒng)相結(jié)合的新型網(wǎng)絡(luò)結(jié)構(gòu),把它應(yīng)用于語(yǔ)音識(shí)別系統(tǒng),使系統(tǒng)不僅具有非線性、自適應(yīng)性、魯棒性和自學(xué)習(xí)等神經(jīng)網(wǎng)絡(luò)本來(lái)的優(yōu)勢(shì),也具有模糊推理和模糊劃分等模糊邏輯全文下載
2010-05-06 09:05:35

隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器

隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器 Copy東京理工大學(xué)的研究人員開(kāi)發(fā)了一種名為“ Hiddenite”的新型加速器芯片,該芯片可以在計(jì)算稀疏“隱藏神經(jīng)網(wǎng)絡(luò)”時(shí)達(dá)到最高的精度
2022-03-17 19:15:13

人工神經(jīng)網(wǎng)絡(luò)導(dǎo)論

人工神經(jīng)網(wǎng)絡(luò)導(dǎo)論依照簡(jiǎn)明易懂、便于軟件實(shí)現(xiàn)、鼓勵(lì)探索的原則介紹人工神經(jīng)網(wǎng)絡(luò)。內(nèi)容包括:智能系統(tǒng)描述模型、人工神經(jīng)網(wǎng)絡(luò)方法的特點(diǎn);基本人工神經(jīng)元模型,人工神經(jīng)
2009-01-13 14:58:5755

傳感器模糊神經(jīng)網(wǎng)絡(luò)非線性誤差補(bǔ)償?shù)难芯?/a>

非線性倒立擺的BP神經(jīng)網(wǎng)絡(luò)系統(tǒng)辨識(shí)

基于BP 神經(jīng)網(wǎng)絡(luò)能以任意精度逼近任何非線性連續(xù)函數(shù)的原理。通過(guò)在MATLAB環(huán)境下,對(duì)典型的不穩(wěn)定、非線性、強(qiáng)耦合的倒立擺系統(tǒng)建立了BP 神經(jīng)網(wǎng)絡(luò)辨識(shí)結(jié)構(gòu),并對(duì)辨識(shí)結(jié)果進(jìn)
2009-05-27 11:54:1414

非線性倒立擺的BP神經(jīng)網(wǎng)絡(luò)系統(tǒng)辨識(shí)

基于BP 神經(jīng)網(wǎng)絡(luò)能以任意精度逼近任何非線性連續(xù)函數(shù)的原理。通過(guò)在MATLAB環(huán)境下,對(duì)典型的不穩(wěn)定、非線性、強(qiáng)耦合的倒立擺系統(tǒng)建立了BP 神經(jīng)網(wǎng)絡(luò)辨識(shí)結(jié)構(gòu),并對(duì)辨識(shí)結(jié)果
2009-05-27 13:28:5321

基于多模型的非線性系統(tǒng)廣義預(yù)測(cè)控制

對(duì)于復(fù)雜的離散時(shí)間非線性系統(tǒng), 提出一種基于多模型的廣義預(yù)測(cè)控制方法. 通過(guò)在平衡點(diǎn)附近建立線性模型, 并用徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)來(lái)補(bǔ)償匹配誤差, 形成了非線性系統(tǒng)的多模型表
2009-06-17 11:27:2024

基于神經(jīng)網(wǎng)絡(luò)的多變量非線性自適應(yīng)解耦控制研究

提出神經(jīng)網(wǎng)絡(luò)前饋?zhàn)赃m應(yīng)解耦控制算法,該算法將多變量非線性系統(tǒng)在平衡點(diǎn)處利用Taylor公式展開(kāi),分為線性部分和高階非線性部分。這樣,將高階非線性部分的影響視為可測(cè)干擾
2009-06-19 11:01:5513

遺傳神經(jīng)網(wǎng)絡(luò)及其在非線性校正中的應(yīng)用

針對(duì)遺傳算法和神經(jīng)網(wǎng)絡(luò)的不足,介紹了對(duì)非線性校正的遺傳神經(jīng)網(wǎng)絡(luò)方法。計(jì)算機(jī)仿真結(jié)果表明了該方法的收斂速度優(yōu)越于其它傳統(tǒng)方法,且具有較強(qiáng)的魯棒性。關(guān)鍵詞:變
2009-06-25 14:05:3912

基于神經(jīng)網(wǎng)絡(luò)的傳感器非線性誤差校正

介紹了用神經(jīng)網(wǎng)絡(luò)校正傳感器系統(tǒng)非線性誤差的原理和方法,提出了基于BP 神經(jīng)網(wǎng)絡(luò)傳感器非線性誤差校正及其模型、算法與實(shí)現(xiàn)技術(shù)。通過(guò)計(jì)算機(jī)仿真與應(yīng)用,顯示出這種逆模型不但
2009-06-29 10:22:0612

基于BP人工神經(jīng)網(wǎng)絡(luò)的圖像壓縮技術(shù)過(guò)程及分析

本文介紹了BP 人工神經(jīng)網(wǎng)絡(luò)在計(jì)算機(jī)圖像壓縮中應(yīng)用的原理,對(duì)其實(shí)現(xiàn)的過(guò)程進(jìn)行了詳細(xì)的闡述,并通過(guò)采用非線性網(wǎng)絡(luò)和最速下降法實(shí)現(xiàn)了圖像壓縮。分析結(jié)果表明:可以通過(guò)犧
2009-07-07 14:42:1931

基于神經(jīng)網(wǎng)絡(luò)的電容式壓力傳感器非線性校正

當(dāng)環(huán)境溫度變化時(shí)電容式壓力傳感器的非線性響應(yīng)特性也發(fā)生很大的變化,為了實(shí)現(xiàn)對(duì)電容式壓力傳感器的響應(yīng)特性進(jìn)行自動(dòng)非線性補(bǔ)償,提出了基于神經(jīng)網(wǎng)絡(luò)智能壓力傳感器。
2009-07-09 09:20:5229

基于神經(jīng)網(wǎng)絡(luò)的鉑電阻溫度傳感器非線性校正方法

簡(jiǎn)單介紹了當(dāng)前鉑熱電阻應(yīng)用存在的問(wèn)題,提出了應(yīng)用前向多層神經(jīng)網(wǎng)絡(luò)建立熱電阻的逆模型堿性非線性補(bǔ)償,使得鉑電阻的靜態(tài)特性線性化,穩(wěn)重采用MATLAB為工具,對(duì)神經(jīng)網(wǎng)絡(luò)進(jìn)
2009-07-16 10:07:5129

振動(dòng)筒式壓力傳感器的FLANN非線性校正

采用函數(shù)鏈神經(jīng)網(wǎng)絡(luò)方法對(duì)振動(dòng)筒式壓力傳感器進(jìn)行非線性校正,與BP算法相比,函數(shù)鏈神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)明了、算法簡(jiǎn)單、易于收斂。文中介紹了函數(shù)鏈神經(jīng)網(wǎng)絡(luò)解決振動(dòng)筒式壓力傳感
2009-09-22 11:20:0214

基于小波神經(jīng)網(wǎng)絡(luò)建立虛擬儀器非線性軟校正模型

神經(jīng)網(wǎng)絡(luò)具有良好的學(xué)習(xí)特性,小波變換有良好的時(shí)頻局部化性質(zhì),將二者結(jié)合在一起構(gòu)成小波神經(jīng)網(wǎng)絡(luò)兼有神經(jīng)網(wǎng)絡(luò)和小波變換的優(yōu)點(diǎn)。本文提出了解決虛擬儀器系統(tǒng)非線性
2009-09-23 10:06:5111

Chebyshev神經(jīng)網(wǎng)絡(luò)電路設(shè)計(jì)

摘要:以Chebyshev神經(jīng)網(wǎng)絡(luò)為基礎(chǔ),給出了非線性函數(shù)的仿真實(shí)例.并提出了用模擬電路實(shí)現(xiàn)Chebyshev神經(jīng)網(wǎng)絡(luò)的方法。關(guān)鍵詞:Chebyshev 神經(jīng)網(wǎng)絡(luò) 仿真 模擬電路
2010-05-06 10:42:516

基于系統(tǒng)辨識(shí)的神經(jīng)網(wǎng)絡(luò)魯棒性研究

給出了神經(jīng)網(wǎng)絡(luò)魯棒性的概念" 基于系統(tǒng)辨識(shí)的BP網(wǎng)絡(luò)RBF網(wǎng)絡(luò)和ELMAN 網(wǎng)絡(luò)的魯棒性問(wèn)題進(jìn)行了分析和研究$ 仿真結(jié)果表明" 神經(jīng)網(wǎng)絡(luò)用于非線性系統(tǒng)辨識(shí)有其廣闊的前景$
2010-07-22 16:20:047

人工神經(jīng)網(wǎng)絡(luò),人工神經(jīng)網(wǎng)絡(luò)是什么意思

人工神經(jīng)網(wǎng)絡(luò),人工神經(jīng)網(wǎng)絡(luò)是什么意思 神經(jīng)網(wǎng)絡(luò)是一門(mén)活躍的邊緣性交叉學(xué)科.研究它的發(fā)展過(guò)程和前沿問(wèn)題,具有重要的理論意義
2010-03-06 13:39:013296

人工神經(jīng)網(wǎng)絡(luò)的基本特征有哪些?

人工神經(jīng)網(wǎng)絡(luò)的基本特征有哪些? 由大量處理單元互聯(lián)組成的非線性、自適應(yīng)信息處理系統(tǒng)。它是在現(xiàn)代神經(jīng)科學(xué)研究成果的基礎(chǔ)上提
2010-03-06 13:39:373520

人工神經(jīng)網(wǎng)絡(luò)的特點(diǎn)有哪些?

人工神經(jīng)網(wǎng)絡(luò)的特點(diǎn)有哪些? 人工神經(jīng)網(wǎng)絡(luò)突出的優(yōu)點(diǎn) (1)可以充分逼近任意復(fù)雜的非線性關(guān)系; (2)所有定量或定性
2010-03-06 13:48:1524281

非線性特征(1)#人工智能

非線性人工智能
jf_49750429發(fā)布于 2022-11-28 00:59:31

非線性特征(2)#人工智能

非線性人工智能
jf_49750429發(fā)布于 2022-11-28 00:59:55

基于小波神經(jīng)網(wǎng)絡(luò)非線性噪聲對(duì)消

實(shí)現(xiàn)了參考噪聲與干擾噪聲呈非線性相關(guān)條件下的噪聲對(duì)消。在參考噪聲與干擾噪聲非線性相關(guān)時(shí),傳統(tǒng)的橫向?yàn)V波器效果不理想,利用小波神經(jīng)網(wǎng)絡(luò)非線性特性,可更好的解決非線
2012-05-07 14:15:1824

GA_BP神經(jīng)網(wǎng)絡(luò)非線性函數(shù)擬合_徐富強(qiáng)

GA_BP神經(jīng)網(wǎng)絡(luò)非線性函數(shù)擬合_徐富強(qiáng)
2017-03-19 11:26:541

基于改進(jìn)神經(jīng)網(wǎng)絡(luò)非線性系統(tǒng)觀測(cè)器設(shè)計(jì)[圖]

摘要: 根據(jù)非線性系統(tǒng)利用前饋網(wǎng)絡(luò)的函數(shù)逼近能力,設(shè)計(jì)了一種神經(jīng)網(wǎng)絡(luò)觀測(cè)器,并利用網(wǎng)絡(luò)權(quán)值校正法,建立Lyapunov函數(shù)對(duì)觀測(cè)器的穩(wěn)定性進(jìn)行了分析。為了加快訓(xùn)練速度,在訓(xùn)練網(wǎng)絡(luò)時(shí)采用LM優(yōu)化算法
2018-01-19 22:44:25388

人工智能之卷積神經(jīng)網(wǎng)絡(luò)

人工智能機(jī)器學(xué)習(xí)有關(guān)算法內(nèi)容,人工智能之機(jī)器學(xué)習(xí)主要有三大類:1)分類;2)回歸;3)聚類。今天我們重點(diǎn)探討一下卷積神經(jīng)網(wǎng)絡(luò)(CNN)算法。 前言: 人工智能 機(jī)器學(xué)習(xí)有關(guān)算法內(nèi)容,請(qǐng)參見(jiàn)公眾
2018-06-18 10:15:004809

深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)是什么樣的?

怎樣理解非線性變換和多層網(wǎng)絡(luò)后的線性可分,神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)就是學(xué)習(xí)如何利用矩陣的線性變換加激活函數(shù)的非線性變換。
2018-10-23 14:44:213741

神經(jīng)網(wǎng)絡(luò)分類

本視頻主要詳細(xì)介紹了神經(jīng)網(wǎng)絡(luò)分類,分別是BP神經(jīng)網(wǎng)絡(luò)、RBF(徑向基)神經(jīng)網(wǎng)絡(luò)、感知器神經(jīng)網(wǎng)絡(luò)線性神經(jīng)網(wǎng)絡(luò)、自組織神經(jīng)網(wǎng)絡(luò)、反饋神經(jīng)網(wǎng)絡(luò)。
2019-04-02 15:29:2212600

什么是人工智能神經(jīng)網(wǎng)絡(luò)

什么是人工智能神經(jīng)網(wǎng)絡(luò),大腦的結(jié)構(gòu)越簡(jiǎn)單,那么智商就越低。單細(xì)胞生物是智商最低的了。人工神經(jīng)網(wǎng)絡(luò)也是一樣的,網(wǎng)絡(luò)越復(fù)雜它就越強(qiáng)大,所以我們需要深度神經(jīng)網(wǎng)絡(luò)。這里的深度是指層數(shù)多,層數(shù)越多那么構(gòu)造的神經(jīng)網(wǎng)絡(luò)就越復(fù)雜。
2019-07-04 11:30:243713

淺析人工智能的卷積神經(jīng)網(wǎng)絡(luò)與圖像處理

人工智能深度學(xué)習(xí)技術(shù)中,有一個(gè)很重要的概念就是卷積神經(jīng)網(wǎng)絡(luò) CNN(Convolutional Neural Networks)。
2019-11-02 11:23:433470

如何使用小波神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)溫度傳感器非線性補(bǔ)償?shù)难芯?/a>

解決人工智能“智障”新思路——哈密頓函數(shù)

人工神經(jīng)網(wǎng)絡(luò)人工智能深度學(xué)習(xí)算法的基礎(chǔ)結(jié)構(gòu),大致模仿人類大腦的物理結(jié)構(gòu)。當(dāng)你為神經(jīng)網(wǎng)絡(luò)提供訓(xùn)練樣例時(shí),它會(huì)通過(guò)人工神經(jīng)元層運(yùn)行它,然后調(diào)整它們的內(nèi)部參數(shù),以便能夠?qū)哂邢嗨茖傩缘奈磥?lái)數(shù)據(jù)進(jìn)行分類
2020-06-27 16:43:001456

淺談人工智能神經(jīng)網(wǎng)絡(luò)的運(yùn)作點(diǎn)

談及人工智能,就會(huì)涉及到人工神經(jīng)網(wǎng)絡(luò)。人工神經(jīng)網(wǎng)絡(luò)是現(xiàn)代人工智能的重要分支,它是一個(gè)為人工智能提供動(dòng)力,可以模仿動(dòng)物神經(jīng)網(wǎng)絡(luò)行為特征,進(jìn)行分布式并行信息處理的系統(tǒng)。
2020-07-27 10:25:37683

人工神經(jīng)網(wǎng)絡(luò)有什么樣的特點(diǎn)和優(yōu)勢(shì)

、良好的自組織自學(xué)習(xí)能力等特點(diǎn)。BP(BackPropagation )算法又稱為誤差反向傳播算法,是人工神經(jīng)網(wǎng)絡(luò)中的一種監(jiān)督式的學(xué)習(xí)算法。BP 神經(jīng)網(wǎng)絡(luò)算法在理論上可以逼近任意函數(shù),基本的結(jié)構(gòu)由非線性變化單元組成,具有很強(qiáng)的非線性映射能力。而且網(wǎng)絡(luò)的中間層數(shù)、各層的處理單元數(shù)及網(wǎng)絡(luò)的學(xué)
2021-01-20 10:18:308

人工神經(jīng)網(wǎng)絡(luò)有什么樣的特點(diǎn)和優(yōu)勢(shì)

、良好的自組織自學(xué)習(xí)能力等特點(diǎn)。BP(BackPropagation )算法又稱為誤差反向傳播算法,是人工神經(jīng)網(wǎng)絡(luò)中的一種監(jiān)督式的學(xué)習(xí)算法。BP 神經(jīng)網(wǎng)絡(luò)算法在理論上可以逼近任意函數(shù),基本的結(jié)構(gòu)由非線性變化單元組成,具有很強(qiáng)的非線性映射能力。而且網(wǎng)絡(luò)的中間層數(shù)、各層的處理單元數(shù)及網(wǎng)絡(luò)的學(xué)
2021-01-20 10:18:300

人工神經(jīng)網(wǎng)絡(luò)的詳細(xì)資料綜述

的自組織自學(xué)習(xí)能力等特點(diǎn)。BP(BackPropagation)算法又稱為誤差反向傳播算法,是人工神經(jīng)網(wǎng)絡(luò)中的一種監(jiān)督式的學(xué)習(xí)算法。BP神經(jīng)網(wǎng)絡(luò)算法在理論上可以逼近任意函數(shù),基本的結(jié)構(gòu)由非線性變化單元組成,具有很強(qiáng)的非線性映射能力。而且網(wǎng)絡(luò)的中間層數(shù)、各層的處理單元數(shù)及網(wǎng)絡(luò)的學(xué)習(xí)系數(shù)等參數(shù)可根
2021-02-01 10:33:089

人工神經(jīng)網(wǎng)絡(luò)有哪些基本特征

非線性非線性關(guān)系是自然界的普遍特性。大腦的智慧就是一種非線性現(xiàn)象。人工神經(jīng)元處于激活或抑制二種不同的狀態(tài),這種行為在數(shù)學(xué)上表現(xiàn)為一種非線性關(guān)系。具有閾值的神經(jīng)元構(gòu)成的網(wǎng)絡(luò)具有更好的性能,可以提高容錯(cuò)性和存儲(chǔ)容量。
2021-02-25 10:48:0013

模糊控制與神經(jīng)網(wǎng)絡(luò)的資料總結(jié)

無(wú)反饋連接,夠成具有層次結(jié)構(gòu)的前饋型神經(jīng)網(wǎng)絡(luò)系統(tǒng)。單計(jì)算層前饋神經(jīng)網(wǎng)絡(luò)只能求解線性可分問(wèn)題,能夠求解非線性問(wèn)題網(wǎng)絡(luò)必須是具有隱層的多層神經(jīng)網(wǎng)絡(luò)。
2021-03-01 10:09:0015

人工智能-BP神經(jīng)網(wǎng)絡(luò)算法的簡(jiǎn)單實(shí)現(xiàn)

人工智能-BP神經(jīng)網(wǎng)絡(luò)算法的簡(jiǎn)單實(shí)現(xiàn)說(shuō)明。
2021-05-25 11:30:1612

人工神經(jīng)網(wǎng)絡(luò)控制

神經(jīng)網(wǎng)絡(luò)控制,即基于神經(jīng)網(wǎng)絡(luò)控制或簡(jiǎn)稱神經(jīng)控制,是指在控制系統(tǒng)中采用神經(jīng)網(wǎng)絡(luò)這一工具對(duì)難以精確描述的復(fù)雜的非線性對(duì)象進(jìn)行建模,或充當(dāng)控制器,或優(yōu)化計(jì)算,或進(jìn)行推理,或故障診斷等,亦即同時(shí)兼有上述某些
2021-05-27 15:02:1112

基于工程實(shí)例的非線性問(wèn)題數(shù)值軟件選取

基于工程實(shí)例的非線性問(wèn)題數(shù)值軟件選取
2021-07-05 15:13:256

STM32F103的AD采樣非線性問(wèn)題

我發(fā)現(xiàn)STM32F103的AD有非線性問(wèn)題,AD轉(zhuǎn)換數(shù)值非線性區(qū)間為255-270,1023-1043,1279-1293,3048-3072,3568-3584,我做了很多次驗(yàn)證,可以重復(fù),測(cè)量了8個(gè)通道,大家可以驗(yàn)證下,...
2021-12-02 18:06:071

人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

Network, NN)或神經(jīng)計(jì)算(Neurocomputing)。ANN具有自適應(yīng)學(xué)習(xí)、自適應(yīng)處理能力和良好的非線性建模能力,可應(yīng)用于模式識(shí)別、分類、預(yù)測(cè)、辨識(shí)、控制等領(lǐng)域,并在人工智能、機(jī)器學(xué)習(xí)等領(lǐng)域發(fā)揮
2023-08-22 16:45:182941

已全部加載完成