有隔離變壓器的互補(bǔ)驅(qū)動(dòng)電路
(2)有隔離變壓器的互補(bǔ)驅(qū)動(dòng)電路。如圖10所示,V1、V2為互補(bǔ)工作,電容C起隔離直流的作用,T1為高頻、高磁率的磁環(huán)或磁罐。
導(dǎo)通時(shí)隔離變壓器上的電壓為(1-D)Ui、關(guān)斷時(shí)為D Ui,若主功率管S可靠導(dǎo)通電壓為12V,而隔離變壓器原副邊匝比N1/N2為12/(1-D)/ Ui。為保證導(dǎo)通期間GS電壓穩(wěn)定C值可稍取大些。該電路具有以下優(yōu)點(diǎn):
①電路結(jié)構(gòu)簡(jiǎn)單可靠,具有電氣隔離作用。當(dāng)脈寬變化時(shí),驅(qū)動(dòng)的關(guān)斷能力不會(huì)隨著變化。
?、谠撾娐分恍枰粋€(gè)電源,即為單電源工作。隔直電容C的作用可以在關(guān)斷所驅(qū)動(dòng)的管子時(shí)提供一個(gè)負(fù)壓,從而加速了功率管的關(guān)斷,且有較高的抗干擾能力。
但該電路存在的一個(gè)較大缺點(diǎn)是輸出電壓的幅值會(huì)隨著占空比的變化而變化。當(dāng)D 較小時(shí),負(fù)向電壓小,該電路的抗干擾性變差,且正向電壓較高,應(yīng)該注意使其幅值不超過(guò)MOSFET柵極的允許電壓。當(dāng)D大于0.5時(shí)驅(qū)動(dòng)電壓正向電壓小于其負(fù)向電壓,此時(shí)應(yīng)該注意使其負(fù)電壓值不超過(guò)MOAFET柵極允許電壓。所以該電路比較適用于占空比固定或占空比變化范圍不大以及占空比小于0.5的場(chǎng)合。
?。?)集成芯片UC3724/3725構(gòu)成的驅(qū)動(dòng)電路
集成芯片UC3724/3725構(gòu)成的驅(qū)動(dòng)電路
電路構(gòu)成如圖11 所示。其中UC3724用來(lái)產(chǎn)生高頻載波信號(hào),載波頻率由電容CT和電阻RT決定。一般載波頻率小于600kHz,4腳和6腳兩端產(chǎn)生高頻調(diào)制波,經(jīng)高頻小磁環(huán)變壓器隔離后送到UC3725芯片7、8兩腳經(jīng)UC3725進(jìn)行調(diào)制后得到驅(qū)動(dòng)信號(hào),UC3725內(nèi)部有一肖特基整流橋同時(shí)將7、8腳的高頻調(diào)制波整流成一直流電壓供驅(qū)動(dòng)所需功率。一般來(lái)說(shuō)載波頻率越高驅(qū)動(dòng)延時(shí)越小,但太高抗干擾變差;隔離變壓器磁化電感越大磁化電流越小,UC3724發(fā)熱越少,但太大使匝數(shù)增多導(dǎo)致寄生參數(shù)影響變大,同樣會(huì)使抗干擾能力降低。根據(jù)實(shí)驗(yàn)數(shù)據(jù)得出:對(duì)于開(kāi)關(guān)頻率小于100kHz的信號(hào)一般?。?00~500)kHz載波頻率較好,變壓器選用較高磁導(dǎo)如5K、7K等高頻環(huán)形磁芯,其原邊磁化電感小于約1毫亨左右為好。這種驅(qū)動(dòng)電路僅適合于信號(hào)頻率小于100kHz的場(chǎng)合,因信號(hào)頻率相對(duì)載波頻率太高的話,相對(duì)延時(shí)太多,且所需驅(qū)動(dòng)功率增大,UC3724和UC3725芯片發(fā)熱溫升較高,故100kHz以上開(kāi)關(guān)頻率僅對(duì)較小極電容的MOSFET才可以。對(duì)于1kVA左右開(kāi)關(guān)頻率小于100kHz的場(chǎng)合,它是一種良好的驅(qū)動(dòng)電路。該電路具有以下特點(diǎn):?jiǎn)坞娫垂ぷ?,控制信?hào)與驅(qū)動(dòng)實(shí)現(xiàn)隔離,結(jié)構(gòu)簡(jiǎn)單尺寸較小,尤其適用于占空比變化不確定或信號(hào)頻率也變化的場(chǎng)合。
5.功率MOSFE發(fā)展與研發(fā)
MOSFET漏源之間的電流通過(guò)一個(gè)溝道(CHANNEL)上的柵(GATE)來(lái)控制。按MOSFET的原意,MOS代表金屬(METAL)-氧化物(OXIDE)-半導(dǎo)體(SEMICONDUCTOR),即以金屬層(M)的柵極隔著氧化層(O)利用電場(chǎng)的效應(yīng)來(lái)控制半導(dǎo)體(S)。FET (FIELDEFFECTTRANSISTOR場(chǎng)效應(yīng)晶體管)的名字也由此而來(lái)。然而我HEXFET中的柵極并不是金屬做的,而是用多晶硅(POLY)來(lái)做柵極,這也就是圖中所注明的硅柵極(SILICONGATE)。IR在1978年時(shí)是用金屬做柵極的,1979年的GEN-1HEXFET是世界上第一個(gè)采用多晶硅柵極的多原胞型功率MOSFET。
IR 功率MOSFET的基本結(jié)構(gòu)中每一個(gè)六角形是一個(gè)MOSFET的原胞(CELL)。正因?yàn)樵橇切蔚模℉EXANGULAR),因而IR常把它稱(chēng)為 HEXFET。功率MOSFET通常由許多個(gè)MOSFET原胞組成。已風(fēng)行了十余年的IR第三代(GEN-3)HEXFET每平方厘米約有18萬(wàn)個(gè)原胞,目前世界上密度最高的IR第八代(GEN-8)HEXFET每平方厘米已有1740萬(wàn)個(gè)原胞。這就完全可以理解,現(xiàn)代功率半導(dǎo)體器件的精細(xì)工藝已和微電子電路相當(dāng)。新一代功率器件的制造技術(shù)已進(jìn)入亞微米時(shí)代。
作為功率MOSFET 來(lái)說(shuō),有兩項(xiàng)參數(shù)是最重要的。一個(gè)是RDS(ON),即通態(tài)時(shí)的漏源電阻。另一個(gè)是QG,即柵極電荷,實(shí)際即柵極電容。柵極電容細(xì)分起來(lái)可分成好幾個(gè)部分,與器件的外特性輸入與輸出電容也有較復(fù)雜的關(guān)系。除此之外有些瞬態(tài)參數(shù)也需要很好考慮,這些我們留到后面再談。
5.1通態(tài)漏源電阻RDS(ON)的降低
為降低RDS(ON),先要分析一下RDS(ON)是由哪些部分組成。這些電阻主要包括:
5.1.1 RCH:溝道電阻,即柵極下溝道的電阻。
5.1.2 RJ:JFET電阻,即把各原胞的P-基區(qū)(P-BASE)所夾住的那部分看為JEFT。JEFT是結(jié)型場(chǎng)效應(yīng)晶體管(JUNCTIONFET)的簡(jiǎn)稱(chēng)。結(jié)型場(chǎng)效應(yīng)管是以PN結(jié)上的電場(chǎng)來(lái)控制所夾溝道中的電流。雖同稱(chēng)為場(chǎng)效應(yīng)晶體管,但它和MOSFET是以表面電場(chǎng)來(lái)控制溝道中的電流情況不同,所以 MOSFET有時(shí)也被稱(chēng)為表面場(chǎng)效應(yīng)管。
5.1.3 RD:漂移層電阻,主要是外延層中的電阻。一般做功率MOSFET都采用外延片。所謂外延片即在原始的低阻襯底(SUBSTRATE)硅片上向外延伸一層高阻層。高阻層用來(lái)耐受電壓,低阻襯底作為支撐又不增加很多電阻。對(duì)MOSFET來(lái)說(shuō),載流子(電子或空穴)在這些區(qū)域是在外界電壓下作漂移(DRIFT)運(yùn)動(dòng),故而相關(guān)的電阻稱(chēng)為RD。若要求MOSFET的耐壓高,就必須提高高阻層(對(duì)N溝道MOSFET來(lái)說(shuō),稱(chēng)N-層)的電阻率,但當(dāng)外延層的電阻率提高時(shí),RD也隨之提高。這也是很少出現(xiàn)一千伏以上的高壓MOSFET的原因。
?。?)降低溝道電阻首先我們來(lái)看如何降低溝道電阻。前面已經(jīng)提到,當(dāng)前功率MOSFET發(fā)展的一個(gè)重要趨勢(shì)就是把單個(gè)原胞的面積愈做愈小,原胞的密度愈做愈高,其原因就是為了降低溝道電阻。為什么提高原胞的密度可降低溝道電阻呢?從圖一可以看出:HEXFET的電流在柵極下橫向流過(guò)溝道。其電阻的大小和通過(guò)溝道時(shí)的截面有關(guān)。而這個(gè)截面隨器件內(nèi)原胞周界的增長(zhǎng)而增大。當(dāng)原胞密度增大時(shí),在一定的面積內(nèi),圍繞著所有原胞的總周界長(zhǎng)度也迅速擴(kuò)大,從而使溝道電阻得以下降。
IR公司1995 年發(fā)展的第五代HEXFET,其原胞密度已比第三代大5倍。因此通過(guò)同樣電流時(shí)的硅片面積有希望縮小到原來(lái)的2/5。第五代的另一個(gè)特點(diǎn)是,其工藝大為簡(jiǎn)化,即從第三代的6塊光刻板減為4塊,這樣器件的制造成本就可能降低。當(dāng)今世界上最流行的仍是IR的第三代和第五代,第三代常用于較高電壓的器件(如 200~600伏),而第五代常用于較低電壓的器件(如30~250伏)。高密度結(jié)構(gòu)在較低電壓器件中顯示更優(yōu)越作用的原因是因?yàn)榈蛪浩骷捏w電阻RD較小,因而降低溝道電阻更易于顯出效果。過(guò)去有多年工作經(jīng)驗(yàn)的電力電子工作者,常對(duì)當(dāng)前生產(chǎn)廠熱中于發(fā)展低壓器件不感興趣或不可理解。這主要是電力電子技術(shù)的應(yīng)用面已大大拓寬,一些低壓應(yīng)用已成為新技術(shù)發(fā)展中的關(guān)鍵。最典型的是電腦中電源的需求。正在研究的是1伏甚至到0.5伏的電源,同時(shí)必須迅速通過(guò)50 或100安這樣大的電流,這種要求對(duì)半導(dǎo)體器件是十分苛刻的。就像要求一個(gè)非常低壓力的水源,瞬間流出大量的水一樣。
為進(jìn)一步增加原胞密度,也可以采用挖槽工藝。通常稱(chēng)為T(mén)RENCH(溝槽)MOSFET。將溝槽結(jié)構(gòu)作了一個(gè)簡(jiǎn)單圖示。溝槽結(jié)構(gòu)的溝道是縱向的,所以其占有面積比橫向溝道為小。從而可進(jìn)一步增加原胞密度。有趣的是,最早做功率稍大的垂直型縱向MOSFET時(shí),就是從挖槽工藝開(kāi)始的,當(dāng)初稱(chēng)為VVMOS,但由于工藝不成熟,因而只有當(dāng)平面型的VDMOS出現(xiàn)后,才有了新一代的功率半導(dǎo)體器件的突破。在半導(dǎo)體器件的發(fā)展過(guò)程中,因?yàn)榘雽?dǎo)體工藝的迅速發(fā)展,或是一種新的應(yīng)用要求,使一些過(guò)去認(rèn)為不成熟的技術(shù)又重新有了發(fā)展,這種事例是相當(dāng)普遍的。當(dāng)前一統(tǒng)天下的縱向結(jié)構(gòu)功率MOSFET,也有可能吸納橫向結(jié)構(gòu)而為低壓器件注入新的發(fā)展方向。
?。?)降低JFET電阻
為降低JFET電阻,很早就采用了一種工藝,即增加所夾溝道中的摻雜濃度,以求減小JFET的溝道電阻。
溝槽式結(jié)構(gòu)也為降低JFET電阻帶來(lái)好處。原結(jié)構(gòu)中的JFET在溝槽型結(jié)構(gòu)中已經(jīng)消失。這也就使其RDS(ON)得以進(jìn)一步下降。然而溝槽式的缺點(diǎn)是其工藝成本要比原平面型的結(jié)構(gòu)較高。
?。?)降低漂移電阻
上面的討論已涉及到如何降低溝道電阻RCH和JFET電阻RJ?,F(xiàn)在剩下的是如何來(lái)減小芯片的體電阻RD。上面已經(jīng)提到,當(dāng)要求MOSFET工作于較高電壓時(shí),必需提高硅片的電阻率。在雙極型晶體管中(晶閘管也一樣),有少數(shù)載流子注入基區(qū)來(lái)調(diào)節(jié)體內(nèi)電阻,所以硅片電阻率的提高對(duì)內(nèi)阻的增加影響較小。但 MOSFET則不屬于雙極型晶體管,它依賴(lài)多數(shù)載流子導(dǎo)電,所以完全是以外延層的電阻率來(lái)決定其RD。因而使MOSFET的RDS(ON)與器件耐壓有一個(gè)大概2.4到2.6次方的關(guān)系。即要求器件的耐壓提高時(shí),其RDS(ON)必然有一個(gè)十分迅速的上升。這也是為什么在600伏以上常采用IGBT的原因。IGBT是絕緣柵雙極型晶體管的簡(jiǎn)稱(chēng),IGBT雖然結(jié)構(gòu)與MOSFET相似,但卻是一種雙極型器件。它也是采用少數(shù)載流子的注入來(lái)降低其體電阻的。
一個(gè)十分聰明的構(gòu)思又為功率MOSFET提供了一條新出路。如果N-溝道MOSFET中的P基區(qū)向體內(nèi)伸出較長(zhǎng)形成一個(gè)P柱。則當(dāng)漏源之間加上電壓時(shí),其電場(chǎng)分布就會(huì)發(fā)生根本的變化。通常PN結(jié)加上電壓時(shí),電位線基本上是平行于PN結(jié)面的。但這種P柱在一定的設(shè)計(jì)下可使電位線幾乎和元件表面平行。就像P柱區(qū)和N-區(qū)已被中和為一片高阻區(qū)一樣。于是就可以采用較低的電阻率去取得器件較高的耐壓。這樣,RDS(ON)就因較低的電阻率而大大下降,和耐壓的關(guān)系也不再遵循前面所提到的2.4到2.6次方的關(guān)系了。這樣一種思路為MOSFET拓寬了往高壓的發(fā)展,今后和IGBT在高壓領(lǐng)域的競(jìng)爭(zhēng)就大為有利了。
通過(guò)上面的各種努力,IR公司MOSFET的RDS(ON)正逐年下降,或者說(shuō),正在逐季下降。應(yīng)用工作者如何抓住機(jī)會(huì)跟上器件的發(fā)展,及時(shí)把更好性能的器件用上去,就變得十分重要了。
5.2柵電荷QG的降低
MOSFET常常用在頻率較高的場(chǎng)合。開(kāi)關(guān)損耗在頻率提高時(shí)愈來(lái)愈占主要位置。降低柵電荷,可有效降低開(kāi)關(guān)損耗。
為了降低柵電荷,從減小電容的角度很容易理解在制造上應(yīng)采取的措施。為減小電容,增加絕緣層厚度(在這兒是增加氧化層厚度)當(dāng)然是措施之一。減低電容板一側(cè)的所需電荷(現(xiàn)在是降低溝道區(qū)的攙雜濃度)也是一個(gè)相似的措施。此外,就需要縮小電容板的面積,這也就是要減小柵極面積??s小原胞面積增加原胞密度從單個(gè)原胞來(lái)看,似乎可以縮小多晶層的寬度,但從整體來(lái)講,其總的柵極覆蓋面積實(shí)際上是增加的。從這一點(diǎn)來(lái)看,增加原胞密度和減小電容有一定的矛盾。
采用了上述措施,IR 產(chǎn)生了第3.5代。也稱(chēng)為低柵電荷MOSFET。第3.5代的米勒電容下降80%,柵電荷下降40%。當(dāng)然第3.5代還有許多其它措施來(lái)降低RDS (ON)(降低了15%),這樣所帶來(lái)的好處不僅是開(kāi)通速度快了,溫升降低了,也帶來(lái)了DV/DT能力的提高,柵漏電壓的增高,同時(shí)也降低了驅(qū)動(dòng)電路的費(fèi)用。所以對(duì)應(yīng)用工作者來(lái)說(shuō),將大家最為熟悉的第三代改換用第3.5代的時(shí)機(jī)已經(jīng)來(lái)到。為緩解原胞密度增高后柵面積增大引起柵電荷過(guò)分增大的問(wèn)題,一種折衷的結(jié)構(gòu)也隨之出現(xiàn)。那就是將漏極的原胞結(jié)構(gòu)改為條狀漏極。這時(shí)候可以有同樣窄的柵極(條密度很高)而不至于增加太多柵極面積,所以柵電荷得以減小。
評(píng)論
查看更多